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ABSTRACT

Offline-trained neural receivers achieve significant performance
gains. Yet, online retraining is required to sustain such gains in a
new environment. Instead of retraining whenever a new channel
environment arises, a multi-cell collaborative learning framework is
designed to enable the neural receivers to generalize to unseen sce-
narios, thus preventing frequent retraining. This framework features
two key designs: 1) the personalized federated learning paradigm
is exploited to strike a generalization-personalization balance, with
each model sharing a global representation network and personal-
izing the local head network; 2) an online data filtering mechanism
is designed to filter out low-impact data samples. According to
simulations, the collaboratively-learned receivers outperform the
traditional ones by over 3 dB and improves the generalization per-
formance by 5.2 dB in the unseen scenarios.

Index Terms— Personalized federated learning, neural receiver,
online collaboration

1. INTRODUCTION

The sixth-generation (6G) communication networks are expected to
be AI-empowered. An increasing amount of research shows that
machine learning (ML) plays a significant part on the physical layer
of wireless networks [1, 2]. Particularly, the neural-network-based
wireless receiver, named neural receiver, is one of the most promis-
ing solutions for 6G receiver design [2], which features an end-to-
end learning and fully data-driven methodology. As shown in Fig.
1, in a neural receiver, the channel estimator and detector are re-
placed by a neural network (NN) that takes the frequency-domain
receive signals as inputs and outputs the soft-detection bits. By im-
plicitly capturing highly-nonlinear channel characteristics [2], neural
receivers can significantly outperform the traditional ones.

In this paper, the uplink neural receivers located at base stations
(BS) are considered, given the fact that BSs usually have sufficient
computing and storage resources [3]. These neural receivers receive
the uplink signals from user terminals. As a common practice, a
neural receiver is offline pretrained and then deployed online [4].
Nevertheless, the pretrained model may not generalize well in online
channel environments, as there exist discrepancies in data distribu-
tions between offline and online environments [4, 5]. To this end,
online knowledge acquisition for neural receivers becomes a neces-
sity to alleviate online performance degradation.

To address the offline-online discrepancy, some research efforts
have been made in [4–7]. In [4], the NN model architectures are
redesigned such that it is sufficient to retrain a subset of parameters
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Fig. 1. Uplink neural receiver.
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Fig. 2. Multi-cell network with heterogeneous channel scenarios.

online. The meta learning algorithms are used in [6, 8] to retrain
the neural receiver with fewer training steps. In [5, 7], the retrain-
ing performance each time is enhanced by data augmentation. The
above studies focus on how to adapt the neural receiver efficiently
for a new online environment. However, they cannot reduce the fre-
quency of online retraining when facing with time-varying environ-
ments. Specifically, whenever an unseen online environment arises,
the neural receiver needs to repeat another round of retraining. This
leads to high costs in the long run, as the receiver has to endure per-
formance loss during each retraining [5]. Thus, the key problem lies
in how to reduce the frequency of such online retraining.

To tackle the above problem, the core insight is that if the neural
receiver enriches its online knowledge by learning from other cells’
data distribution, it can generalize to the locally unseen environments
and avoid frequent retraining. Therefore, a collaborative learning
framework is proposed: each BS collaborates with other BSs to learn
its neural receiver, such that the knowledge accumulated in the entire
multi-cell network can be exploited. As shown in Fig. 2, in a multi-
cell network, multiple small BSs are connected to a central server
via backhaul links [9]. In each cell, the BS has multiple antennas
for receiving the uplink orthogonal frequency-division multiplexing
(OFDM) signals from terminals. The local labeled datasets are built
up by the transmission of pilot-based training sequences.

How to fulfill the proposed collaborative learning remains a
challenge. As a simple way of collaboration, centralized learning
gathers multi-cell data in one server. Yet, it is infeasible practically



due to the privacy concerns [10]: 1) if the BSs belong to various
service providers (SP), it violates each SP’s privacy policy to ex-
pose data to others; 2) even if the same SP regulates all the BSs,
the data still contain user-related information, e.g., user trajectories
and behavior modes [11]. Therefore, it is more practical for each
BS keeping its data locally. This can be realized by conventional
federated learning (FL) [12, 13], where a global model is learned
with locally-held data. However, due to the data heterogeneity
across cells in reality, learning a global model may sacrifice the
local performance at each individual BS, which indicates a lack of
personalization [14, 15]. This generalization-personalization trade-
off needs to be addressed in multi-cell collaboration. In addition,
to ease the burden of online data storage locally, it is critical to
filter out those pilot samples that have little contribution to collab-
orative learning. Thus, an online data filtering mechanism must be
designed.

To tackle the above challenges, a personalized federated learn-
ing (PFL) framework named pFedRx is designed for collaboratively
expanding online knowledge of uplink neural receivers and thus re-
ducing online retraining frequency. It features two designs.

First, to address the generalization-personalization trade-off, the
neural receiver is split into two consecutive parts, i.e., the represen-
tation network and the local head network, and multiple BSs col-
laborate to learn a globally-shared representation network and per-
sonalized local heads. Specifically, the received uplink pilots over
the OFDM resource grid at each antenna can be interpreted as a
multi-channel image and representation learning is conducted over
this ‘image’ to extract the common features shared by heteroge-
neous wireless channels. Based on the shared representation lay-
ers, the personalized classification is performed by local head layers
via casting the features to binary soft bits. In this way, each BS
strikes a balance between learning from others and preserving the
local knowledge. Second, the pilot filtering mechanism is designed
by defining an impact metric of each online sample and evaluating it
on the currently deployed neural receiver. The impact metric is the
classification loss weighted by the received SNR. This is because the
loss observed in the low-SNR regime is much higher than that in the
high-SNR regime. To move this this SNR-induced bias, the received
SNR is taken as a weighting factor, such that the data samples in the
high-SNR regime can have relatively higher losses. We filter out and
discard those data samples with impact metrics below a threshold.

The main contributions of this paper are summarized as follows:

• A PFL-based collaborative learning framework is designed
to enrich online knowledge of neural receivers and prevent
frequent retraining.

• Within the framework, multiple BSs collaborate with each
other to learn a shared representation network and per-
sonalized local heads, which strikes the generalization-
personalization balance. The online data filtering mechanism
reduces the local data storage burden by discarding those less
impactful data samples.

The rest of this paper is organized as follows. The system model
is provided in Sec. 2. The overall framework is presented in Sec.
3, and the design details are elaborated in three aspects in Sec. 4.
The designed scheme is evaluated in Sec. 5, and the conclusions are
drawn in Sec. 6.

2. SYSTEM MODEL

In this section, first, the single-input-multiple-output (SIMO) OFDM
communication system is characterized. Then, the key elements of

the supervised learning problem (i.e., learning a neural receiver) are
stated.

2.1. SIMO-OFDM Communications

The uplink SIMO OFDM communication is considered with Nr

receive antennas at the BS and one transmit antenna at the user.
One OFDM frame spans a transmission time interval (TTI) and in-
cludes Ns OFDM symbols and Nf subcarriers. Each resource ele-
ment (RE) has one symbol time and one subcarrier. Let Y,H,N ∈
CNr×Ns×Nf be the received signals, the channel coefficients, the
additive white Gaussian noise, respectively. The transmit signal
matrix is X ∈ CNs×Nf . Let k be the index of OFDM symbol
and l be the index of subcarriers. We define the following vectors
ykl = Y[:, k, l],hkl = H[:, k, l],nkl = N[:, k, l] and they all have
the dimension of Nr. The frequency-domain received signal on each
RE during one TTI is

ykl = hklxkl + nkl, (1)

where xkl ∈ X, ∀k = 1, ..., Ns, j = 1, ..., Nf .

2.2. Elements of Supervised Learning Problem

There are M base stations in a multi-cell network. Each BS m
builds up an online dataset Dm locally via the transmission of
pilot-based training sequences [2], which is denoted by Dm =

{(T(i)
m ,L

(i)
m )}Nm

i=1 with Nm data samples, where T
(i)
m and L

(i)
m are

the input and labels of the i-th data sample. Let p = [p1, ..., pM ] be
the quantity distribution vector, i.e., pm = Nm/N where N is the
total number of data samples. The empirical error function Fm for
the neural receiver on BS m over the local dataset is defined as

Fm(hw) =
1

Nm

Nm∑
i=1

ℓ
(
hw

(
T(i)

m

)
,L(i)

m

)
, (2)

where hypothesis h is parameterized by model parameters w, and
ℓ(·) is the loss function. For ease of notation, we use Fm(w) =
Fm(hw). The detailed realizations of Tm,Lm, and ℓ(·) will be
stated in Sec. 4.1.

3. OVERALL FRAMEWORK OF COLLABORATIVE
LEARNING

During collaborative learning, the working procedure of each BS is
illustrated in Fig. 3. Each BS optimizes its neural receiver locally
based on its online dataset. Specifically, the local online dataset is
obtained via the periodic transmission of pilot sequences within a
fixed time interval named as collaboration period. The periodically
received pilot samples are filtered and stored. The collaboration pe-
riod has a large timescale as its purpose is to enrich online knowledge
on the long term and to prevent frequent retraining. The learning
phases on two different timescales are elaborated as follows.

On a large timescale, multiple BSs participate in the collabo-
rative learning process based on the online local datasets. To start
with, the neural receiver at each BS holds an initial model wm con-
sisting of two parts: the representation network θm and the local
head ϕm, i.e., wm = {θm,ϕm}. The initial model can be the
offline-pretrained model, or the collaborative model from the last
collaboration period. As a result of collaborative learning, a glob-
ally shared representation network θnew is obtained that extracts the
common features across multiple cells, and each BS learns a person-
alized head ϕnew

m to capture the local distribution. Thus, the learned
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Fig. 3. pFedRx: working process of each BS in collaboration.

collaborative models wnew
m = {θnew,ϕnew

m },∀m = 1, ...,M are
deployed into each BS’s neural receiver.

On a small timescale, fast adaptation can be conducted for mul-
tiple times based on the most recent pilot frames during the collabo-
ration period. This adapts the neural receiver to the current channel.
It is realized by updating the local heads for a few gradient descent
steps while keeping the representation network fixed. Note that other
efficient online adaptation methods in [5,7] can be used in combina-
tion with collaborative learning, which is not the focus of this paper.

It is stressed that the collaborative learning process is in paral-
lel with real-time model inference and fast adaptation. Collaborative
learning is a long-term online task [3] running in the background.
The generalization performance of neural receivers can be signifi-
cantly improved after collaborative learning, as the multi-cell online
knowledge is well learned.

4. COLLABORATIVE LEARNING FOR MULTI-CELL
NEURAL RECEIVERS

In this section, we first present the design details of neural receivers.
Then, the PFL algorithm for multi-cell collaborative learning is elab-
orated, followed by the mechanism design of online data filtering.

4.1. Design of Neural Receiver

As shown in Fig. 4(a), the input of neural receiver consists of two
parts: received OFDM frame Y ∈ CNr×Ns×Nf and demodulation
reference symbols (DMRS) XR ∈ CNs×Nf . The configuration of
XR is aligned with third generation partnership project (3GPP) stan-
dards. It contains zeros at non-DMRS positions as in [2]. With these
two parts stacked, we have Tm ∈ R(2Nr+2)×Ns×Nf (omitting the
data sample index) by treating their real and imaginary parts as two
separate channels. The output hw(Tm) ∈ CNs×Nf×Nb is the log-
likelihood ratios (LLR) to be fed into channel decoders, where Nb

is the number of bits per symbol. The labels are the transmitted bit
sequence of length nt ·Nb with nt as the number of transmitted sym-
bols, i.e., Lm ∈ Rnt·Nb (omitting the data sample index). Note that
the online labels are required for supervised retraining. There are
typically two ways of retrieving labels [5]: 1) pilot-based sequence
transmission (where Lm is known by the receiver); 2) on-the-fly la-
bel recovery [7]. Although the pilot transmission incurs a data rate
loss, the label recovery method can be easily impacted by the er-
roneous labels. In this paper, we adopt the former method but our
design can be easily extended to the later one. At last, the soft bit
detection task is cast as a binary classification problem. The binary
sigmoid cross-entropy loss is used to compute the distance between
model outputs and labels as in [2].
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Fig. 4. Model architecture of a neural receiver and multi-cell collab-
orative learning.

For the model architecture of the neural receiver, a fully convo-
lutional neural network (CNN) consisting of multiple preactivation
ResNet blocks is employed as in [2]. More details can be referred
in [2]. As shown in Fig. 4(a), CNN model wm at each BS m is
partitioned into two parts before collaboration: representation layers
θm and local head layers ϕm. Based on the studies in representation
learning [16], the early convolutional layers correspond to the repre-
sentation shared across different tasks while the last few convolution
layers tend to be task-specific. In Sec. 5.2, we will show that the
early convolutional layers indeed learn the similar representations
and the best partitioning will be decided through empirical studies.

4.2. Personalized Federated Learning Algorithm for Multi-Cell
Neural Receivers

As depicted in Fig. 4(b), model wm at BS m is partitioned into two
parts, representation layers θm and local head layers ϕm. During
collaborative learning, multiple BSs collaborate to learn the global
representation layers θ and to personalize the local classifier layers
ϕm, ∀m = 1, ...,M . In this way, each neural receiver captures the
common knowledge shared by the multi-cell network as well as the
local knowledge. The optimization formulation of this collaborative
learning problem is expressed as follows:

min
θ,{ϕm}Mm=1

M∑
m=1

pmFm(θ,ϕm), (3)

where the empirical function F (·) (defined in Sec. 2) is weighted by
the quantity distribution vector p = [p1, ..., pM ].

To solve the above optimization problem, the PFL algorithm
FedRep [14] is adapted to our multi-cell collaboration problem with
two distinct features. First, the model splitting in [14] has a straight-
forward pattern, i.e., separating convolutional layers from fully-
connected layers, while different splitting cases must be explored for
fully convolutional models in neural receivers. Second, the number
of local iterations is increased significantly to reduce the backhaul
communication costs between the BSs and the central server, as the
backhual links can be wireless and use the same radio resources
as the access network. Before diving in the algorithm, the batch
gradient descent operation is defined as g(Fm(ψ,γ),ψ, η,K),
which means conducting K batch gradient descents on the model
parameters ψ with the objective Fm(ψ,γ) and the learning rate η.



Algorithm 1 pFedRx: Collaborative learning of neural receivers
based on personalized federated learning

Require: Initial models θ(0), {ϕ(0)
m }Mm=1, number of communica-

tion rounds T , number of local iterations Kp for the personal-
ized head, number of local iterations Kr for the shared represen-
tation, set of BSs S = {1, 2, ...,M}.

1: for t = 0 to T − 1 do
2: The server broadcasts the shared representation θ(t) to each

BS in S,
3: for each BS m ∈ S in parallel do
4: Set θ(t)m = θ(t),
5: ϕ

(t+1)
m ← g

(
Fm(θ

(t)
m ,ϕ

(t)
m ),ϕ

(t)
m , ηp,Kp

)
,

6: θ
(t+1)
m ← g

(
Fm(θ

(t)
m ,ϕ

(t+1)
m ),θ

(t)
m , ηr,Kr

)
,

7: BS m sends θ(t+1)
m back to the server,

8: end for
9: The server conducts aggregation on the representation layers

θ(t+1) =
∑

m∈S pmθ
(t+1)
m ,

10: end for
11: Each BS m learns a personalized neural receiver wm =

{θ(T−1),ϕ
(T−1)
m }.

Especially, the one-step gradient descent is explicitly expressed as

g(Fm(ψ,γ),ψ, η, 1) = ψ − η∇ψFm(ψ,γ). (4)

The algorithm of pFedRx is elaborated in Alg. 1. Initial models
wm = {θ(0)m ,ϕ

(0)
m },∀m = 1, ...,M are deployed at the BSs and

the initial shared representation network is θ(0). At the beginning of
each round t, the server broadcasts last-round shared representation
θ(t) to each BS m, which is used to initialize all the representa-
tion layers of neural receivers (i.e., θ(t)m = θ(t)). For local training,
each BS first conducts batch gradient descent on personalized local
head ϕ(t)

m for Kp iterations while keeping the representation layers
fixed, and obtains ϕ(t+1)

m . Then, each BS conducts batch gradient
descent on θ(t)m for Kr iterations, with learned personalized head
ϕ

(t+1)
m fixed. At the end of local training, each BS sends their lo-

cally updated representation θ(t+1)
m back to the central server. Such

T communication rounds of training are performed until each BS m
obtains a well-learned personalized neural receiver with multi-cell
collaborative knowledge, i.e., wm = {θ(T−1),ϕ

(T−1)
m }.

4.3. Online Data Filtering Mechanism

As mentioned in Sec. 3 and 2, each BS constructs a local dataset
for collaborative learning via the periodic transmission of pilot se-
quences. If all these received training data are saved, the storage re-
dundancy will be incurred, as not all the data samples contain useful
information for learning new environments. Some of the data sam-
ples can be more informative and representative than others. There-
fore, to alleviate the above redundancy, an online data filtering mech-
anism is designed by defining an impact metric of each online sam-
ple and evaluating it on the currently deployed neural receiver.

The impact metric is the classification loss of one sample
weighted by the achievable rate under the received SNR. This is
because SNR induces a bias in training data samples, as the classi-
fication loss observed in the low-SNR regime is much higher than
that in the high-SNR regime. To remove this bias, a weighting factor

Table 1. Heterogeneous multi-cell environments
Cell ID Channel model Delay spread Velocity range

1 TDL-B/C 0-50 ns 15-20 m/s
2 TDL-B/C 400-500 ns 0-5 m/s
3 TDL-B/C 200-300 ns 15-20 m/s
4 TDL-B/C 400-500 ns 15-20 m/s
5 TDL-D/E 0-50 ns 0-5 m/s
6 TDL-D/E 400-500 ns 15-20 m/s

related to SNR is taken into account. Let α(i) be the impact metric
of the i-th data sample on the current model w. Then we have

α(i)(w) = log2

(
1 + γ(i)

)
ℓ
(
hw

(
T(i)

m

)
,L(i)

m

)
, (5)

where γ(i) is the SNR for the i-th sample and the loss is weighted
by the achievable Shannon rate per unit bandwidth. At each BS
m, with the pre-set threshold αth, those online samples that have
α(i)(wm) ≥ αth are selected and saved locally while the others are
filtered out.

5. PERFORMANCE EVALUATION

In this section, our simulation set-up is first presented. Then, the
simulation results of the ablation studies and the comparisons with
several baselines are stated.

5.1. Simulation Set-up

For SIMO communication, we assume two receive antennas at the
BS without loss of generality, and one antenna at the user. The de-
signs can be extended to SIMO systems with more receive antennas.
There are 6 BSs in the multi-cell collaboration. We assume het-
erogeneous channel environments across cells. The channel models
adopt the 3GPP tapped delay line (TDL) channel models [17], i.e.,
non-line-of-sight scenarios (TDL-A/B/C) and line-of-sight scenarios
(TDL-D/E). To showcase the offline-online distribution discrepancy,
the neural receiver is pretrained based on the TDL-A channel model
at a delay spread of 0-50ns and on a velocity range of 0-5m/s. The
online heterogeneous channel environments in six cells are shown in
Tab. 1, and the uplink channel realizations are randomly generated
in each cell.

For the periodic pilot transmission, one pilot-carrying OFDM
frame (1 ms) is transmitted every 128 data-carrying OFDM frames,
which incurs around 0.8% pilot overheads. Note that the online label
recovery method that directly uses data frames for training in [7] can
be used to further reduce the pilot overheads. Each BS builds up
a local dataset with 1000 batches of pilot frames (32 samples per
batch), which corresponds to a collaboration period of 1.15 hours. In
other words, after 1.15-hour online deployment of neural receivers,
multiple BSs collaboratively retrain their neural receivers with multi-
cell channel knowledge. The critical simulation parameters are as
follows. For uplink communications, the carrier frequency is 4 GHz
with the subcarrier spacing 15 kHz; the modulation scheme is 16-
QAM; the 5G LDPC channel coding is adopted with the code rate
as 658/1024; Nf = 72, Ns = 14, nt = 720. For model learning,
the Adam optimizer with 0.001 learning rate is used, and 80% of
the local datasets are used for training while the remaining 20% are
for validation and testing. The PFL parameters are T = 20,Kr =
2Kp = 1600.

The metric for evaluating receiver performance is coded bit-
error rate (BER). Our designed method pFedRx is compared with
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the following baselines: 1) practical LMMSE receiver [2]; 2) genie-
aided LMMSE receiver (with full and exact channel coefficients);
3) locally-trained neural receiver; 4) FedAvg-trained global neural
receiver [12]; 5) Ditto-trained [15] personalized receiver. Ditto is
one of the most effective PFL algorithms. The performance of the
genie-aided LMMSE receiver is considered as the upper bound in
interference-free cases.

5.2. Ablation Study

To justify the design of a shared representation network among cells,
we compare the centered kernel alignment (CKA) similarity index
[16] between the models trained with heterogeneous channel envi-
ronments. The CKA similarity is widely used to compare repre-
sentations learned by different trained models and their layers. The
neural receiver learned in pFedRx has one input convolutional layer,
11 ResNet blocks, and one input convolutional layer, i.e., 13 con-
volutional blocks in total [2]. The models trained in cell 1 and 2
are named NLOS-1-Net and NLOS-2-Net, and the models trained
in cell 5 and 6 are named LOS-5-Net and LOS-6-Net. As shown in
Fig. 5, NLOS-1-Net and LOS-5-Net develop similar representations
in their early layers while in the last few convolutional blocks the
learned representations begin to diverge. This similar pattern also
lies in the comparison of NLOS-1-Net and NLOS-2-Net.

By varying the number of convolutional blocks in the shared rep-
resentation network, the best way of the model splitting is studied.
We evaluate pFedRx with various model splitting schemes as shown
in Fig. 6(a) and the average BER between 3 and 5 dB is computed.
When there are 8 convolutional blocks in the shared representation
(and 5 convolutional blocks in each personalized head), the designed
algorithm achieves the best performance. The effectiveness of the
online data filtering mechanism is evaluated in Fig. 6(b). The rel-
ative model performance (average BER at 6dB) against the unfil-
tered case is presented. With data filtering based on weighted losses,
pFedRx achieves similar performance as the unfiltered scheme but
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reduces the local storage by 16.8%.

5.3. Comparison with Other Baselines

In the local test of neural receivers (i.e., in-distribution test), the
learned neural receiver at each BS is evaluated with its local data
distribution and the average BER across 6 cells is presented. As dif-
ferent cells have heterogeneous channel environments, local learning
is focused on fitting the local data distribution, and thus it can outper-
form others in the local tests with sufficient online data, as shown in
Fig. 7. In this case, our method pFedRx achieves approximately the
same BER performance as the locally-trained neural receiver, both
approaching the upper bound. The pFedRx scheme also achieves
0.7-1 dB gain over FedAvg and 3-3.2 dB gain over the practical
LMMSE receiver.

In the generalization test of neural receivers (i.e., out-of-
distribution test), the learned neural receiver at each BS is evaluated
with a locally unseen data distribution (yet seen in other cells). Due
to the lack of collaborative knowledge form other cells, the locally-
trained neural receiver cannot generalize to unseen distributions
with a significant BER drop. For the collaborative learning case,
all three FL schemes achieve notable generalization performance,
with the BER gains of 5.2 dB (at BER = 0.004) compared to the
locally-trained receiver. Our method pFedRx slightly outperforms
other FL schemes by 0.3 dB in the high-SNR regime. Based on
two type of tests, pFedRx strikes the generalization-personalization
trade-off: the trained neural receiver retains high local performance
and generalizes well to unseen scenarios at the same time.

With the improved generalization ability, the online retraining
frequency is significantly reduced by deploying the trained neural
receivers in pFedRx. Considering a neural receiver in one cell, we
assume the online channel environment is time-varying with 15
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Fig. 9. Online BER in time-varying channel environments.

randomly generated configurations. Their distributions are either
learned before or never seen. We assume that online retraining is
conducted if the detected BER is lower than 10−3. As shown in Fig.
9, the locally-trained receiver requires 11 times of retraining among
15 environments while the receiver in pFedRx does not require any
retraining, as its online knowledge is enriched by the multi-cell col-
laboration. The FedAvg scheme requires retraining twice throughout
the environmental changes. Also, the pFedRx scheme achieves a
lower BER than the FedAvg scheme across all the environments.

6. CONCLUSION

A multi-cell collaborative learning framework (pFedRx) was de-
signed for enriching online knowledge and preventing frequent
retraining of neural receivers. Via the design of PFL paradigm,
the neural receivers retained high local performance and achieved
notable generalization to unseen scenarios as well. This is the first
PFL framework designed for neural receivers. The storage burden at
each BS was alleviated by the online data filtering mechanism. For
future studies, it remains a challenge to adaptively adjust the model
splitting of pFedRx. How to further reduce the pilot overheads and
computation costs of collaborating learning is to be investigated.

7. REFERENCES

[1] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for
channel estimation and signal detection in OFDM systems,”
IEEE Wirel. Commun. Lett., vol. 7, no. 1, pp. 114–117, 2017.

[2] M. Honkala, D. Korpi, and J. M. Huttunen, “DeepRx: Fully
convolutional deep learning receiver,” IEEE Trans. Wirel.
Commun., vol. 20, no. 6, pp. 3925–3940, 2021.

[3] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia,
“Understanding O-RAN: Architecture, interfaces, algorithms,
security, and research challenges,” IEEE Commun. Surv. Tutor.,
vol. 25, no. 2, pp. 1376–1411, 2023.

[4] P. Jiang, T. Wang, B. Han, X. Gao, J. Zhang, C.-K. Wen, S. Jin,
and G. Y. Li, “AI-aided online adaptive OFDM receiver: De-
sign and experimental results,” IEEE Trans. Wirel. Commun.,
vol. 20, no. 11, pp. 7655–7668, 2021.

[5] M. B. Fischer, S. Dörner, F. Krieg, S. Cammerer, and S. ten
Brink, “Adaptive NN-based OFDM receivers: Computational
complexity vs. achievable performance,” in IEEE Asilomar
Conf. Signals Syst. Comput., 2022, pp. 194–199.

[6] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to de-
modulate from few pilots via offline and online meta-learning,”
IEEE Trans. Signal Process., vol. 69, pp. 226–239, 2021.

[7] M. B. Fischer, S. Dörner, S. Cammerer, T. Shimizu, H. Lu,
and S. Ten Brink, “Adaptive neural network-based OFDM re-
ceivers,” in IEEE Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), 2022, pp. 1–5.

[8] O. Wang, J. Gao, and G. Y. Li, “Learn to adapt to new environ-
ments from past experience and few pilot blocks,” IEEE Trans.
Cogn. Commun. Netw., vol. 9, no. 2, pp. 373–385, 2022.

[9] T. Wang, S. Chen, Y. Zhu, A. Tang, and X. Wang, “Linkslice:
Fine-grained network slice enforcement based on deep rein-
forcement learning,” IEEE J. Sel. Areas Commun., vol. 40,
no. 8, pp. 2378–2394, 2022.

[10] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning
for wireless communications: Motivation, opportunities, and
challenges,” IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51,
2020.

[11] Y. Cui, J. Guo, C.-K. Wen, and S. Jin, “Communication-
efficient personalized federated edge learning for massive
mimo csi feedback,” IEEE Trans. Wirel. Commun., 2023.

[12] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Artif. Intell. Stat., 2017, pp. 1273–
1282.

[13] M. B. Mashhadi, N. Shlezinger, Y. C. Eldar, and D. Gündüz,
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