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Abstract—A pretrained neural channel estimator cannot gener-
alize to all channel environments, necessitating online adaptation.
Conventional methods demand ground-truth channel coefficients
as supervised labels, but such labels are unavailable online. To
this end, a self-supervised task is introduced on top of the original
channel-estimation task to facilitate label-free adaptation of neu-
ral estimators. Specifically, this task randomly masks a fraction
of resource elements in each received frame and reconstructs
such masked parts. To enable effective reconstruction, the task
input must incorporate two components: the unmasked parts
and estimated data-symbols of masked parts. These estimated
symbols are obtained via an online symbol-recovery mechanism,
so no additional pilot overhead is incurred. To consolidate the
self-supervised task with the original task, a two-branch masked
auto-encoder (MAE) model called ChannelMAE is developed,
with each branch dedicated to one task. The two branches
share the same encoder but use separate decoders. During
online adaptation, the encoder is updated by optimizing the
self-supervised branch, which learns channel statistical features
and shares them with the channel-estimation branch. Therefore,
online channel-estimation accuracy is much improved. Extensive
experiments show that ChannelMAE reduces channel-estimation
error by up to 71.8% and 87.1% compared with the pretrained
model and the state-of-the-art adaptation scheme, respectively.

I. INTRODUCTION

Deep learning (DL)-based wireless physical layer design has
attracted growing attention in recent years [1]. Particularly, the
neural network (NN) based Orthogonal Frequency-Division
Multiplexing (OFDM) channel estimator (i.e., neural channel
estimator) is one of the most promising solutions for 6G
intelligent receivers [2]. As shown in Fig. 1, a neural channel
estimator only replaces the conventional channel estimator
by an NN, which takes pilot-based channel estimates as
inputs and predicts full-frame channel coefficients. It can
significantly outperform traditional estimators in real-world
scenarios without requiring explicit channel modeling or prior
channel statistics [1], [3], [4]. As a common practice, a neural
channel estimator is pretrained offline and then deployed
online. However, it is impractical for an offline dataset to cover
all possible channel conditions [5], so performance of the
pretrained channel estimator can degrade in varying channel
environments. Therefore, neural channel estimators must be
adapted online.

Existing solutions to online adaptation of OFDM neural
channel estimators [2], [6]–[8] still pose two challenges. First,
conventional adaptation methods demand ground-truth channel
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Fig. 1. Illustration of an OFDM neural channel estimator.

coefficients as supervised labels, but such labels are unavail-
able online [6]. Some studies [2], [8] obtain approximated
channel coefficients using prior channel statistics, but acquir-
ing such prior knowledge is also unrealistic. Second, how
to avoid additional pilot overhead is crucial. Existing work
either doubles pilot overhead [2] or periodically populates an
entire OFDM frame with pilots for online adaptation [9]–
[11]. Such schemes also incur control signaling overhead,
as signaling messages are required to trigger transmission of
these additional pilots [2]. To the best of our knowledge, there
still lacks an online learning framework that can fully resolve
the above two challenges.

To this end, a self-supervised task that does not require
true channel coefficients or additional pilots is introduced on
top of the original channel-estimation task (i.e., main task).
The key insight is that this new task must learn the latent
features that benefit the main task. As a result, via online self-
supervised learning (SSL) of this task alone, online features
are captured and shared with the main task, thereby improving
the main-task performance. This design rationale is inspired by
test-time training (TTT) in machine learning [12]–[14]. While
designing the channel-estimation task is straightforward, there
still exist three challenges: 1) how to design an appropriate
self-supervised task (also named SSL task) that aligns with the
above design principles; 2) how to design a model architecture
to consolidate the SSL task with the original task; 3) how to
design an effective and efficient training strategy. They are
addressed as follows.

First, the SSL task is designed as first randomly masking
a large fraction of resource elements in each received frame
and then reconstructing those masked parts, namely masked
reconstruction [15]. The reason for this design lies in the fact
that received signals inherently carry information of channel
coefficients. Therefore, reconstructing different masked parts
of received signals implicitly learns channel statistical fea-



tures in both time and frequency domains, and such features
are also essential to the channel-estimation task. To enable
effective reconstruction, this task must also incorporate the
estimated data symbols as an input component besides the
unmasked parts of the frame. These estimated symbols are
obtained via an online symbol-recovery mechanism, where
data-symbols are recovered through symbol detection on-
line. Thus, no additional pilot overhead is incurred. Note
that the recovered symbols cannot be used as pseudo-labels
to back-propagate through the whole receiver for training,
because the traditionally-designed detection modules can be
non-differentiable [16]. In addition, the above task design
results in high correlation between the SSL and main tasks,
because channel estimation can be interpreted as a special case
of masked reconstruction: it reconstructs channel coefficients
from the noise-corrupted local observation at pre-known pilot
positions. Such correlation leads to synergetic learning of the
two tasks.

Second, to consolidate the SSL task with the original task,
a two-branch masked auto-encoder (MAE) model architecture
called ChannelMAE is developed, with each branch dedicated
to one task. The two branches share a feature encoder but
have their task-specific decoders. The encoder is designed as
a lightweight attention-based transformer [15], which produces
low-dimensional latent representations from the input. Via
the self-attention mechanism, it implicitly captures channel
statistical features with high computation efficiency [17]. Both
decoders have fully-convolutional architectures but with dif-
ferent model sizes, performing reconstruction from the latent
representations.

Third, a two-phase training strategy is designed for Chan-
nelMAE. In the offline pretraining phase, all model parameters
are pretrained by optimizing the main and SSL branches
together. In the online adaptation phase, only the shared
encoder is updated online by optimizing the SSL branch.
The online-channel features learned by the encoder are also
used in the main branch, thereby improving online channel-
estimation accuracy. In addition, it is crucial to reduce memory
footprint during adaptation. Thus, batch-wise online learning is
enforced, where each adaptation step is conducted over a batch
of online streaming samples that is immediately purged after
use. To enrich data quantity and diversity, each online batch is
further augmented by masking the same received frame with
different random masks when optimizing the SSL task.

With the above three key designs, our designed two-task
learning framework holds several distinct features compared
with the existing TTT framework [12]: 1) TTT sets classifi-
cation as its main task, whereas this paper is focused on a
regression problem; 2) TTT constructs a single-input multi-
task problem by letting two tasks process the same input,
whereas in our case the two tasks can have diverse inputs,
resulting in a multi-input multi-task problem. 3) TTT performs
per-sample adaptation before inference, while ChannelMAE
enforces per-batch adaptation on a relatively larger timescale
after inference of this batch, which is better suited to wireless
communication applications.

The main contributions of this paper are summarized as
follows:

• An SSL task is introduced on top of the original channel-
estimation task to facilitate label-free adaptation of neural
channel estimators. It is designed as reconstructing the
randomly-masked portions of received radio frames. An
online symbol-recovery mechanism is designed to pro-
vide estimated data-symbols as the task input component,
without incurring extra pilot overhead.

• A two-branch MAE model architecture named Channel-
MAE is designed to consolidate the SSL task with the
channel-estimation task. With each branch dedicated to
one task, the two branches share a feature encoder but
have their task-specific decoders.

• An offline-online two-phase training strategy is designed
for ChannelMAE. Particularly in the online adaptation
phase, the shared encoder is adapted by optimizing the
SSL branch with batch-wise online learning. The adapted
encoder improves online channel-estimation performance
by implicitly capturing channel statistical features.

• Extensive experiments are carried out to validate key pa-
rameters and mechanisms of ChannelMAE. Performance
results show that ChannelMAE significantly outperforms
the state-of-the-art adaptation schemes.

The rest of this paper is organized as follows. Related work
is presented in Section II, while the system model is provided
in Section III. The overview of two-task framework is stated
in Section IV, followed by the key designs elaborated in
Section V. Performance evaluation is carried out in Section VI,
and the paper is concluded in Section VII.

II. RELATED WORK

Neural channel estimators play a critical role in future wire-
less communications. Its objective is to learn the non-linear
mapping from channel estimates at pilot positions to channel
coefficients of an entire frame based on channel datasets.
Such a data-driven channel estimator is first proposed in [4],
[18], where ChannelNet consisting of the super-resolution and
restoration convolutional neural networks (CNN) is designed
to interpolate and denoise channel estimates. Deep residual
learning is introduced to OFDM channel estimation in [19].
To improve model generalization ability and computational
efficiency, CNN is further replaced by the attention-based
transformer in OFDM channel estimation [2], [17], [20], [21].
An end-to-end transformer model is designed in [21], but it
incurs high computation cost by applying attention on the
entire frame. To reduce computation cost, a hybrid architecture
is proposed in [2], [20], consisting of the transformer, the fully-
connected up-sampling layer, and the CNN. Distinct from [2],
[20], we design an MAE for the channel-estimation task and
it features a transformer-based encoder and a ResNet-based
decoder, which significantly improves parameter efficiency by
eliminating fully-connected layers.

The above research is focused on training offline neural
channel estimators with ground-truth channel coefficients as



supervised labels. Online adaptation without such labels at-
tracts growing attention. In [2], a new type of pilot sig-
nals, termed label pilot, is designed to assist online adapta-
tion, which incurs substantial extra pilot overhead. Instead
of predicting the full-frame channel coefficients, the model
HA03 inputs channel estimates at standard-pilot positions
and outputs channel coefficients at label-pilot positions, and
the results are then bilinearly interpolated to the full-frame
channel responses. To acquire accurate coefficients at label-
pilot positions as training labels, either transmitted power of
label pilot signals is increased or prior channel statistics are
assumed. The approach in [8] adopts a similar method. Beyond
these studies, a denoising network (DnCNN) is trained in
[7], using signals with additional synthetic noise as inputs
and original signals as outputs. The trained model is directly
used for channel estimation. However, the method is limited
to narrow-band channels, and applying it to OFDM channels
requires bilinear interpolation of pilot estimates as the first
step.

Compared with existing methods, our scheme introduces
a two-task adaptation framework and designs a two-branch
MAE architecture, which is the first to realize online adapta-
tion without ground-truth channel coefficients, prior channel
statistics, or extra pilot overhead.

III. SYSTEM MODEL

The Single-Input Single-Output (SISO) OFDM communica-
tion is considered with one receive antenna and one transmit
antenna. One OFDM frame spans a transmission time interval
(TTI) and includes Ns OFDM symbols and Nf subcarriers.
Each resource element (RE) has one symbol time and one
subcarrier. Let Y,H,N ∈ CNs×Nf be the received signals, the
channel coefficients, the zero-mean additive white Gaussian
noise of one OFDM frame, respectively. The transmit signal
matrix is X ∈ CNs×Nf . The frequency-domain received signal
at the receive antenna during one TTI is Y = H ⊙ X + N,
where N ∼ CN (0, σ2

n) and σn is the standard deviation of
Gaussian noise. Let Nsp be the number of OFDM symbols
carrying pilots (i.e., pilot symbol time) within one frame. At
each pilot symbol time, Nfp subcarriers carry pilots (i.e., pilot
subcarriers). Thus, in total NspNfp REs are occupied with pilot
symbols. With transmitted pilots Xp ∈ CNsp×Nfp , received
pilots Yp ∈ CNsp×Nfp are obtained. Pilot-based Least-Squares
(LS) estimate Ĥp ∈ CNsp×Nfp is computed as:

Ĥp = argmin
Hp∈CNsp×Nfp

∥Yp −Hp ⊙Xp∥2 =
Yp

Xp
, (1)

where the division between Yp and Xp is element-wise.
Among conventional methods, linear Minimum Mean-

Squared Error (LMMSE) channel estimator is widely ac-
knowledged as a strong baseline, which estimates channel
coefficients by linearly filtering Ĥp with channel cross- and
auto-correlation matrices [22]. But it is extremely challenging
to obtain accurate channel correlations in practice. By contrast,
neural channel estimators aim to learn a non-linear mapping
from Ĥp to H using NNs in a purely data-driven fashion,
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Fig. 2. Overview of two learning phases.

without requiring prior channel statistics. This resolves the
challenge of LMMSE estimators.

IV. OVERVIEW OF TWO-TASK LEARNING FRAMEWORK

A. Task Formulation

As depicted in Fig. 2, the SSL and channel-estimation tasks
(i.e., main task) are consolidated to a two-branch MAE model
ChannelMAE, wherein they: 1) share one common feature
encoder denoted by αe and have their task-specific decoders
(main-task decoder βm and SSL-task decoder βs) and 2) they
have different input-output pairs. We denote the main branch
as θm = {αe,βm} and the SSL branch as θs = {αe,βs}.

1) Main-Task Formulation: The main branch takes pilot-
based LS estimates Ĥp as the input and outputs full-frame
estimated channel coefficients Ĥ. By denoting the mapping
function parameterized by θm as φθm

(·), the main task is
formulated as

Ĥ = φθm(Ĥp). (2)

2) SSL-Task Formulation: The SSL task is formulated as
reconstructing received frame Y from its randomly-masked
version. Due to the randomness of transmitted data-symbols
X, directly reconstructing Y is infeasible. Thus, the estimated
data-symbols X̂ must be incorporated into the task input
as prior information to enable effective reconstruction. X̂
is obtained via an online symbol-recovery mechanism, as
elaborated in Section V-C.

Let Mr ∈ RNs×Nf denote a random binary mask, where
1 indicates an unmasked position and 0 indicates a masked
position. Following the masked-reconstruction paradigm, let
Yo ∈ CNs×Nf be the masked frame after applying Mr, i.e.,
Yo = Y ⊙ Mr. The SSL branch takes Yo and X̂ as two
raw inputs and reconstructs received frame Ŷ as the output.
Letting ϕθs(·) be the mapping parameterized by θs, the SSL
task is expressed by

Ŷ = ϕθs

(
Yo, X̂

)
. (3)

B. Overview of Two Learning Phases

There exist two learning phases: offline pretraining and
online adaptation. ChannelMAE is pretrained offline by jointly
optimizing {αe,βm,βs} on labeled data for both the main
and SSL tasks. During online adaptation, we update only the
shared encoder αe using the SSL loss and keep both decoders
frozen, since true channel coefficients are unavailable.



As illustrated in Fig. 2, Online adaptation is conducted step-
by-step, with each step spanning ∆N TTIs. At each TTI, the
following procedures are performed: 1) the receiver obtains
received frame Y and performs LS estimation to obtain Ĥp

based on Eq. (1), and feeds Ĥp into the main branch to output
Ĥ; 2) the receiver then recovers transmitted data-symbols X̂;
3) {Y, X̂} of the current TTI is stored in an online buffer. As
∆N TTIs of data are buffered, they are augmented into one
online batch, over which the SSL-branch loss is computed
and used to update αe. The buffer is then emptied, and
the next adaptation step begins with αe re-initialized to its
updated parameters. Through this batch-wise online learning
pattern, ChannelMAE is gradually adapted to new channel
distributions over time with a low memory footprint in terms
of data storage.

V. KEY DESIGNS OF CHANNELMAE
A. Input Pre-Processing

The shared feature encoder is realized by a transformer
encoder. Thus, before entering the encoder, the inputs of the
SSL task must be pre-processed and tokenized, while the input
of the main task must be tokenized. Note that the complex
tensors are transformed to real-valued ones by stacking their
real and imaginary parts, which gives Ĥp ∈ RNsp×Nfp×2 and
Y,H,X ∈ RNs×Nf×2. The last dimension of real tensors is
termed ‘channel’ in this paper.

1) SSL-Task Pre-processing (Random Masking and Input
Fusion): Before converting the input of the SSL task into
a sequence of tokens, both random masking and input fusion
must be carefully designed. First, the random masking scheme,
i.e., the procedure for generating Mr, is developed. As il-
lustrated in Fig. 3(b), two variants are investigated: random-
symbol masking and random-RE masking. In random-symbol
masking, Nrm OFDM symbols in each frame are masked,
leaving an unmasked part with dimensions (Ns −Nrm)×Nf .
By contrast, the random-RE masking scheme randomly masks
Nre REs in a frame. Random-symbol masking better preserves
inter-symbol temporal coherence and thus results in a higher
reconstruction accuracy, so it is employed in ChannelMAE.

Second, as the model simultaneously ingests Yo and X̂
as defined in Eq. (3), an input fusion mechanism is required
to transform these raw inputs into a single composite input.
We compare two fusion schemes as in Fig. 3(b). The first
scheme, termed concatenation-based fusion, concatenates the
two inputs channel-wise, leading to [Yo; X̂]. The second
scheme computes an element-wise Hadamard quotient, Ro =
Yo⊙X̂−1, which is called termed ratio-based fusion. In prac-
tice, the ratio-based fusion reduces input dimensionality and
computational cost while delivering comparable performance
to the other fusion scheme, so it is adopted in ChannelMAE.

As depicted in Fig. 3(b), given the random-symbol masking
and the ratio-based fusion schemes, the resulting composite
input Ro ∈ RNs×Nf×2 is then tokenized, which will be
elaborated later. Note that only its non-zero part denoted by
R̆o ∈ R(Ns−Nrm)×Nf×2 is tokenized and sent to the encoder,
thereby reducing the shared encoder’s computation cost.

Rand-RE 
Masking  

Shared 
Encoder

SSL-
Decoder

<latexit sha1_base64="M/yUqhpzDTdYunNl+lC/bK2Xh2A=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi1WXRjcsK9iFNKJPppB06mYSZiVBCfsONC0Xc+jPu/BsnaRbaemDgcM693DPHjzlT2ra/rcra+sbmVnW7trO7t39QPzzqqSiRhHZJxCM58LGinAna1UxzOoglxaHPad+f3eZ+/4lKxSLxoOcx9UI8ESxgBGsjuakbYj31g/Qxy0b1ht20C6BV4pSkASU6o/qXO45IElKhCcdKDR071l6KpWaE06zmJorGmMzwhA4NFTikykuLzBk6M8oYBZE0T2hUqL83UhwqNQ99M5lHVMteLv7nDRMdXHspE3GiqSCLQ0HCkY5QXgAaM0mJ5nNDMJHMZEVkiiUm2tRUMyU4y19eJb2LptNqtu4vG+2bso4qnMApnIMDV9CGO+hAFwjE8Ayv8GYl1ov1bn0sRitWuXMMf2B9/gCdBJIU</latexit>

Y

Rand-Symbol 
Masking 

Concat.-Based 
Input Fusion

Ratio-Based 
Input Fusion

<latexit sha1_base64="GqkxJczqwQCwhRruDr3Xh1btEN4=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqsyIVJdFNy6r2Ae0Q8mkmTY0jyHJCGUY3Pgrblwo4tavcOffmGlnoa0HAueecy+594Qxo9p43reztLyyurZe2ihvbm3v7Lp7+y0tE4VJE0smVSdEmjAqSNNQw0gnVgTxkJF2OL7O/fYDUZpKcW8mMQk4GgoaUYyMlfruYdrjyIzCKL3Lsv6sUDyVtnArXtWbAi4SvyAVUKDRd796A4kTToTBDGnd9b3YBClShmJGsnIv0SRGeIyGpGupQJzoIJ2ekMETqwxgJJV9wsCp+nsiRVzrCQ9tZ76invdy8T+vm5joMkipiBNDBJ59FCUMGgnzPOCAKoINm1iCsKJ2V4hHSCFsbGplG4I/f/IiaZ1V/Vq1dnteqV8VcZTAETgGp8AHF6AObkADNAEGj+AZvII358l5cd6dj1nrklPMHIA/cD5/ANqcmGM=</latexit>

Ro

<latexit sha1_base64="90+HRd9zbPbip6CbX74TQQzcAqw=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqsyIVJdFNy4r2Ie0Q8mkmTY0jyHJCGUY3Pgrblwo4tavcOffmGlnoa0HAueecy+594Qxo9p43reztLyyurZe2ihvbm3v7Lp7+y0tE4VJE0smVSdEmjAqSNNQw0gnVgTxkJF2OL7O/fYDUZpKcWcmMQk4GgoaUYyMlfruYdrjyIzCKL3Psv6sUDyVtnArXtWbAi4SvyAVUKDRd796A4kTToTBDGnd9b3YBClShmJGsnIv0SRGeIyGpGupQJzoIJ2ekMETqwxgJJV9wsCp+nsiRVzrCQ9tZ76invdy8T+vm5joMkipiBNDBJ59FCUMGgnzPOCAKoINm1iCsKJ2V4hHSCFsbGplG4I/f/IiaZ1V/Vq1dnteqV8VcZTAETgGp8AHF6AObkADNAEGj+AZvII358l5cd6dj1nrklPMHIA/cD5/AOWhmGo=</latexit>

Yo

<latexit sha1_base64="90+HRd9zbPbip6CbX74TQQzcAqw=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqsyIVJdFNy4r2Ie0Q8mkmTY0jyHJCGUY3Pgrblwo4tavcOffmGlnoa0HAueecy+594Qxo9p43reztLyyurZe2ihvbm3v7Lp7+y0tE4VJE0smVSdEmjAqSNNQw0gnVgTxkJF2OL7O/fYDUZpKcWcmMQk4GgoaUYyMlfruYdrjyIzCKL3Psv6sUDyVtnArXtWbAi4SvyAVUKDRd796A4kTToTBDGnd9b3YBClShmJGsnIv0SRGeIyGpGupQJzoIJ2ekMETqwxgJJV9wsCp+nsiRVzrCQ9tZ76invdy8T+vm5joMkipiBNDBJ59FCUMGgnzPOCAKoINm1iCsKJ2V4hHSCFsbGplG4I/f/IiaZ1V/Vq1dnteqV8VcZTAETgGp8AHF6AObkADNAEGj+AZvII358l5cd6dj1nrklPMHIA/cD5/AOWhmGo=</latexit>

Yo

<latexit sha1_base64="C/oyC7guayQ/jwRJWUNp6heD0qs=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRKR6rLoxmUF+4AmlMl00g6dTMLMTaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkAiuwXG+rcrG5tb2TnW3trd/cHhkH590dZwqyjo0FrHqB0QzwSXrAAfB+oliJAoE6wXT+8LvzZjSPJZPME+YH5Gx5CGnBIw0tG1vQiDzIgKTIMz6eT60607DWQCvE7ckdVSiPbS/vFFM04hJoIJoPXCdBPyMKOBUsLzmpZolhE7JmA0MlSRi2s8WyXN8YZQRDmNlngS8UH9vZCTSeh4FZrKIqFe9QvzPG6QQ3voZl0kKTNLloTAVGGJc1IBHXDEKYm4IoYqbrJhOiCIUTFk1U4K7+uV10r1quM1G8/G63ror66iiM3SOLpGLblALPaA26iCKZugZvaI3K7NerHfrYzlascqdU/QH1ucPKNeUBQ==</latexit>

X̂

Tokenization

<latexit sha1_base64="M/yUqhpzDTdYunNl+lC/bK2Xh2A=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi1WXRjcsK9iFNKJPppB06mYSZiVBCfsONC0Xc+jPu/BsnaRbaemDgcM693DPHjzlT2ra/rcra+sbmVnW7trO7t39QPzzqqSiRhHZJxCM58LGinAna1UxzOoglxaHPad+f3eZ+/4lKxSLxoOcx9UI8ESxgBGsjuakbYj31g/Qxy0b1ht20C6BV4pSkASU6o/qXO45IElKhCcdKDR071l6KpWaE06zmJorGmMzwhA4NFTikykuLzBk6M8oYBZE0T2hUqL83UhwqNQ99M5lHVMteLv7nDRMdXHspE3GiqSCLQ0HCkY5QXgAaM0mJ5nNDMJHMZEVkiiUm2tRUMyU4y19eJb2LptNqtu4vG+2bso4qnMApnIMDV9CGO+hAFwjE8Ayv8GYl1ov1bn0sRitWuXMMf2B9/gCdBJIU</latexit>

Y
<latexit sha1_base64="JF56ECVqaPkZ4tK0WEtPOMnkazw=">AAAB+XicbVBNS8NAFNzUr1q/oh69LBbBU0lEqseiF48VbK00oWy2m3bpZhN2Xwol5J948aCIV/+JN/+NmzYHbR1YGGbe481OkAiuwXG+rcra+sbmVnW7trO7t39gHx51dZwqyjo0FrHqBUQzwSXrAAfBeoliJAoEewwmt4X/OGVK81g+wCxhfkRGkoecEjDSwLa9MYHMiwiMgzB7yvOBXXcazhx4lbglqaMS7YH95Q1jmkZMAhVE677rJOBnRAGnguU1L9UsIXRCRqxvqCQR0342T57jM6MMcRgr8yTgufp7IyOR1rMoMJNFRL3sFeJ/Xj+F8NrPuExSYJIuDoWpwBDjogY85IpREDNDCFXcZMV0TBShYMqqmRLc5S+vku5Fw202mveX9dZNWUcVnaBTdI5cdIVa6A61UQdRNEXP6BW9WZn1Yr1bH4vRilXuHKM/sD5/ACpdlAY=</latexit>

Ŷ
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Fig. 3. Detailed designs of two model branches.

2) Input Tokenization for Both Tasks: Main-task input
Ĥp ∈ RNsp×Nfp×2 is converted into a sequence of tokens
{Tm}, letting Tm be a single token of main task. Two
tokenization schemes are compared. The first one is symbol-
wise tokenization: it treats each pilot symbol time as one token,
i.e., Tm ∈ R2Nfp , with Nsp tokens in total. The other one is
channel-wise tokenization that aggregates all values belonging
to the same complex channel into a single token, producing
only two tokens—one for the real part and one for the imag-
inary part—each of size Tm ∈ RNspNfp . This tokenization
allows the attention layer to capture time–frequency patterns
over the entire frame more effectively, and thus the model per-
formance outperforms the former one. Ablation studies further
confirm that the channel-wise scheme consistently outperforms
the symbol-wise alternative. Therefore, ChannelMAE uses
channel-wise tokenization throughout its operation. Similar to
the main-task tokenization, R̃o is converted into a sequence
of two tokens, each of size Ts ∈ R(Ns−Nrm)Nf , where Ts

represents a single SSL token.

B. Model Architecture: Two-Branch MAE

Both the main and SSL branches of ChannelMAE adopt
an MAE architecture, as shown in Fig. 3. A transformer
encoder is shared between two branches, and each branch
ends in a ResNet-based decoder. Leveraging self-attention,
the transformer encoder can learn global latent representation
that CNN-based encoders often overlook [17]. Moreover, the
encoder in ChannelMAE only processes the non-zero parts
of each input. Then, through zero-padding, the positional
information of the pilot layout and the random mask is re-
inserted into the main and SSL branches before entering
the decoder, respectively, as shown in Fig. 3(a) and (b).
Insertion of such information explicitly informs the model
which parts are missing, enabling accurate reconstruction. The
model components are detailed in the following.

1) Shared Encoder: As shown in Fig. 4(a), the encoder
αe comprises Ne transformer layers [17], each containing



a multi-head self-attention block and a two-layer multi-
layer perception (MLP) network. Residual connections and
layer normalization (LN) follow both blocks. Within each
layer, self-attention captures correlations among input to-
kens. Letting Q,K,V be queries, keys, and values, we
have Q = K = V. Throughout the encoder, their di-
mensions are kept as RNseq×Nm , where Nseq is the to-
ken count in the input sequence and Nm is the embed-
ding dimension. Let WQ

i ,W
K
i ,WV

i ∈ RNm×dk be the
learnable parameters of each attention head i associated
with queries, keys, and values, respectively, where dk is
the key dimension (also the query and value dimension).
The output projection matrix WO ∈ Rhdk×Nm , where
h is the number of attention heads. To this end, multi-
head self-attention layer Att(Q,K,V) [17] is computed as
Att(Q,K,V) = Concat(head1, ...,headh)W

O, headi =

Softmax
(

QWQ
i (KWK

i )T√
dk

)
VWV

i , where Softmax(·) denotes
SoftMax function. The subsequent MLP has hidden size Nhid

and output size Nm, with GeLu activation applied only after
the first layer.

Note that tokens {Tm} or {Ts} stated in Section V-A
are linearly projected to RNseq×Nm and serve as the ini-
tial Q,K,V. Since channel-wise tokenization is employed,
Nseq = 2 for both tasks.

2) Main-Task Decoder: The output sequence of the encoder
denoted by Pm ∈ R2×NspNfp is reshaped to RNsp×Nfp×2.
Using the pre-known pilot pattern, non-pilot positions are
padded with zeros to obtain a full-size representation P̃m ∈
RNs×Nf×2, as shown in Fig. 3(a). This tensor passes through
the main-task decoder that consists of an input convolu-
tional layer, Ndm ResNet blocks [23], and an output con-
volutional layer, resulting in estimated channel coefficients
Ĥ ∈ RNs×Nf×2.

3) SSL-Task Decoder: The encoder output for the SSL
branch, denoted as Ps ∈ R2×(Ns−Nrm)Nf , is reshaped to
R(Ns−Nrm)×Nf×2. Then random-symbol mask Mr is inserted
back to this representation, which gives P̃s ∈ RNs×Nf×2. The
SSL-task decoder follows the same design as that of main-
task decoder, except that it has a different number of ResNet
blocks denoted by Nds. Since only the SSL task is trained
online to update the shared encoder, a more lightweight SSL-
decoder is designed to reduce the back-propagation cost online
(i.e., Nds < Ndm). At last, as the ratio-based fusion is applied
during pre-processing, the output of SSL-decoder denoted by
R̂ is further post-processed to obtain reconstructed frame Ŷ,
i.e., Ŷ = R̂⊙ X̂, as depicted in Fig. 3(b).

C. Two-Phase Training Procedures

ChannelMAE is trained in two phases: offline pretraining
and online adaptation. Let ℓm(·) and ℓs(·) represent per-
sample loss functions of the main and SSL tasks, respectively.
We denote Y′ as the masked parts of Y and Ŷ′ as the
reconstructed masked parts extracted from Ŷ. The SSL-task
loss computes the squared error only on the masked parts of
the frame, which is ℓs

(
Yo, X̂,Y′) =

∥∥Y′ − ϕ′
θs
(Yo, X̂)

∥∥2
F
,

where ϕ′
θs
(·) further applies the extraction of the masked parts
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(a) Encoder (b) Decoder

…

Fig. 4. Model architecture of ChannelMAE.

upon ϕθs(·), i.e., Ŷ′ = ϕ′
θs
(Yo, X̂), and ∥ · ∥F denotes the

Frobenius norm. The main-task loss is also the squared error,
i.e., ℓm

(
Ĥp,H

)
=

∥∥H− φθm
(Ĥp)

∥∥2
F
.

1) Offline Pretraining: ChannelMAE is first optimized of-
fline, where the trainable parameters are θ = {αe,βm,βs}.
Both the ground-truth channel coefficients and transmit sym-
bols are available in offline simulations, so H and X are
known. Assuming N offline samples, the mean-squared error
(MSE) loss is

Loff(θ) =
1

N

N∑
i=1

[
ℓm

(
Ĥ(i)

p ,H(i)
)
+ ℓs

(
Y(i)

o ,X(i),Y′(i))],
(4)

where i denotes the index of data sample. This loss is then
minimized via multi-epoch training with respect to θ.

2) Online adaptation: During online deployment, only the
SSL task is learned to update the shared encoder. In each
online adaptation step mentioned in Section IV, estimated
data-symbols X̂ must be recovered after main-task inference.
Let T be the index of online adaptation step and t be the index
of TTI within each step. Thus α

(T )
e represents the encoder

used in online adaptation step T , and θ(T )
m ,θ(T )

s denote the
main and SSL branch in the current step, respectively.

The online symbol-recovery mechanism is stated as follows.
As shown in Fig. 5, two optional schemes are provided
for recovering X̂, which are the uncoded and channel-coded
recovery loops. First, in the uncoded recovery loop, the data
symbols are detected by the conventional LMMSE symbol
detector, and the output is directly fed back as one of the
input components of the SSL branch. This scheme conforms
to the normal symbol-detection procedure and thus does not
incur extra computation cost to the detection pipeline. Specif-
ically, at TTI t, the main-task inference is performed through
Ĥ(t) = φ

θ
(T )
m

(Ĥ
(t)
p ), where Ĥ(t), Ĥ

(t)
p are the main-task input

and output at TTI t. Given Ĥ(t), the LMMSE symbol detection
is conducted via

X̂(t) = fdet(Ĥ
(t),Y(t)), (5)

where fdet(·) characterizes the symbol detection process.
Second, in the channel-coded recovery loop, X̂ is recovered

by incorporating channel decoding/encoding processes. In this
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Fig. 5. Uncoded and channel-coded online symbol-recovery schemes.

scheme, we denote the detected bits of TTI t output by
the channel decoder as B̂(t). Then the process of acquiring
estimated symbols X̂ is:

B̂(t) = gdec(Ĥ
(t),Y(t)), X̂(t) = henc(B̂

(t)), (6)

where gdec(·) abstracts the receiving process of symbol de-
tection, symbol de-mapping, and channel decoding; henc(·)
abstracts the additional process of channel re-encoding and
symbol remapping. It is evident that the channel-coded recov-
ery loop incurs extra high computation cost due to henc(·).

In both schemes, symbol errors in X̂ can corrupt SSL learn-
ing and misdirect encoder updates. To limit this effect, we use
a threshold-based filter: online symbol recovery is performed
only on received frames with SNR above 5 dB, and only these
frames are used to train the encoder. Section VI-B further
shows that the SSL task tolerates a moderate error level. Since
the two schemes achieve similar adaptation performance, we
adopt the uncoded loop for online symbol recovery due to its
much lower computational cost.

At each TTI t, {Y(t), X̂(t)} is pushed in the online buffer.
During one online adaptation step, a batch of online samples
{Y(t), X̂(t)}∆N

t=1 with size ∆N is buffered. By the end of each
step, this batch is popped and enlarged by an augmentation
factor A. Specifically, for each Y(t), A independent random
masks are drawn and applied to generate A masked frames.
Each original pair {Y(t), X̂(t)} appears exactly A times in the
augmented batch denoted by Daug, yielding a total of A∆N
augmented training samples. Daug is the one-batch data for
learning the SSL task online.

During online adaptation, the SSL decoder βs is frozen
and only the shared encoder αe is updated. Over the online
augmented-batch data, the MSE loss is

Lon

(
αe

)
=

1

|Daug|

|Daug|∑
i=1

ℓs
(
Y(i)

o , X̂(i),Y′(i)). (7)

The encoder parameters in the current adaptation step T are
updated via one-step gradient descent to obtain new encoder
parameters α

(T+1)
e , i.e., α(T+1)

e = α
(T )
e − µ∇αeLon

(
α

(T )
e

)
,

with learning rate µ.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

1) Wireless System and Channel Datasets: Considering an
SISO-OFDM uplink communication model, the system setup
is as follows. The carrier frequency is 3GHz with subcarrier

frequency 30kHz. Each OFDM frame consists of 14 symbols
and 72 subcarriers, i.e, Ns = 14, Nf = 72. Within each frame,
a 3GPP-aligned pilot pattern [24] is used: two OFDM symbol
times (the 3rd and 10th symbols) are selected as pilots, giving
Nsp = 2, Nfp = 72. The modulation scheme is fixed as 4-
QAM. LDPC channel coding employs code rate 658/1024.

Two categories of channel datasets are considered. First,
3GPP standard channel models, urban macro (UMa) and urban
micro (UMi) [25], are simulated. To demonstrate offline-
online channel distribution shifts, UMa with low mobility (0–
5 m/s) provides the offline distribution, whereas UMi with
high mobility (25–30 m/s) serves online. Second, ray-traced
(RT) real-world channels are generated with Sionna ray tracing
tools [26], [27]. RT-based channel datasets with mobility 0–
10 m/s are prepared using five real-world city scenes [28],
namely generic street canyon, Paris, Florence, Munich, and
San Francisco, and they are labeled as City1–City5 for clarity.
For a single distribution shift, we specifically employ City5 as
the offline channel environment and City3 as the online one,
and we also evaluate multiple online environment shifts.

2) Training Setup: During offline pretraining, 40,000 TTIs
in the SNR range of 10–20 dB are generated for each offline
channel distribution, with the training/validation/test split as
0.8:0.1:0.1. After 80 training epochs using the Adam optimizer
(with learning rate 0.001 and batch size 64). During online
adaptation, the adaptation step contains 32 TTIs, and thus the
original online batch size is also 32. The batch-wise online
learning as stated in Section V-C is performed with learning
rate 0.0005. In total 10,000 TTIs within SNR range 10–15 dB
are simulated online. With the ultimate online-adapted model,
we evaluate the online channel estimation performance with
another separate test dataset. Unless otherwise specified, the
key hyper-parameters are specified as follows: ChannelMAE
uses one encoder layer (Ne = 1); Ndm = 4 and Nds = 2
ResNet blocks in the main and SSL decoders, respectively;
Nrm = 12 masked symbols in the SSL branch; data aug-
mentation A = 5 times; MLP hidden dimension Nhid = 16;
and encoder embedding dimension Nm = 144. Both decoders
employ a kernel size of 5. All simulations are conducted with
Sionna 1.0.1 [29] and TensorFlow 2.15.0 on an NVIDIA RTX
4090 and an Apple M4 CPU.

3) Baselines: Among conventional methods [30], we in-
clude LS, ideal approximate-LMMSE (i.e., ALMMSE), and
ideal LMMSE (i.e., LMMSE). The last two are both ideal
baselines, as ALMMSE estimates channel statistics from true
channel coefficients and LMMSE uses noiseless pilot estimates
and perfect channel statistics for its implementation. For DL-
based methods we compare ChannelMAE with a CNN-based
benchmark ChannelNet [4], the state-of-the-art transformer-
based HA02 [2], [20], the self-supervised denoiser DnCNN
[7], the state-of-the-art model that supports online adaptation
HA03 [2], [8]. The details of these models are stated in
Section II. During online adaptation, only the last two models
are considered as they can be adapted online without true
channel coefficients. We also consider using ground-truth
channel coefficients to train the main branch of ChannelMAE
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in a supervised manner, which serves as the upper bound for
ChannelMAE if no data augmentation is applied.

To evaluate channel estimators, standard Monte-Carlo sim-
ulations are conducted at the selected SNR points, computing
the MSE between estimated and ground-truth channel coeffi-
cients. The MSE gain (in dB) of scheme 2 over scheme 1 is
defined as 10 log10(MSE1/MSE2), where MSE1 and MSE2

are MSEs of two schemes, respectively. Computation cost is
measured by TensorFlow Profiler in terms of floating-point
operation in millions (MFLOP).

B. Ablation Studies

Validation of Online Performance Degradation and On-
line Model Convergence. ChannelMAE is pretrained in the
offline RT channel and then evaluated in both the offline and
online RT channels. As shown in Fig. 6(a), the pretrained
model outperforms ALMMSE across 0–20 dB SNR and even
achieves performance comparable to LMMSE. However, it
witnesses a drastic performance degradation online, as shown
in Fig. 6(b), which validates the necessity of online adaptation.
The convergence behavior of online adaptation is depicted in
Fig. 7, where the SSL task alone is trained to update the shared
encoder. As more online batches are observed, the SSL-task
loss decreases to a plateau, driving down the main-task loss
as well. This indicates a clear synergy between the learning
processes of the two tasks.

The following ablation studies are conducted using 3GPP
channels and the determined designs are also applied to RT
channels.

1) Model Architecture: The impact of various model archi-
tectures on ChannelMAE is studied in two aspects. First, the
number of encoder layers (i.e., Ne) and the numbers of ResNet
blocks in the main-decoder and SSL-decoder (i.e., Ndm, Nds)
are varied. The offline-pretrained and online-adapted models
with various model structures are evaluated at an SNR of
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Fig. 8. Various model architectures of ChannelMAE.
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Fig. 9. Ablation studies of input pre-processing.

15 dB, respectively. As shown in Fig. 8(a), the model with
Ne = 1, Ndm = 4, Nds = 2 outperforms all others in both the
offline and online phases. A relatively smaller SSL-decoder is
designed to reduce online backpropagation cost through the
SSL branch. Second, an end-to-end transformer-based MAE
is compared with ChannelMAE. Specifically, the main and
SSL decoders in ChannelMAE are replaced by transformer
decoders [15] with Ldm and Lds layers, respectively, while
retaining the original encoder. This variant achieves a similar
channel-estimation MSE to ChannelMAE when Ldm = Lds =
1, but its performance degrades significantly during online
adaptation as in Fig. 8(b). Based on these two analyses, the
two-branch MAE is determined with Ne = 1, Ndm = 4, and
Nds = 2.

2) Input Pre-Processing: As stated in Section V-A, the fol-
lowing design aspects must be studied: a) the random masking
scheme and the input fusion scheme for the SSL-task; b) the
tokenization scheme for both tasks. We first compare two
fusion schemes, ratio-based and concatenation-based fusion,
in the pretraining phase. As shown in Fig. 9(a), the ratio-
based fusion scheme achieves a slightly lower MSE than the
concatenation-based scheme in the high-SNR region (i.e., 20
dB). Meanwhile, the latter one increases computation cost
by around 80.5% in terms of MFLOPs. Therefore, the ratio-
based fusion scheme is adopted. Next, the random-symbol and
random-RE masking schemes are compared. The latter fails
to converge online, producing a flat MSE curve, as seen in
Fig. 9(b). Thus, random-symbol masking must be set for the
SSL task. We also vary the number of masked symbols Nrm

but it does not have any noticeable impact on the results.
Last, two tokenization methods are compared in Fig. 9(c).
The online-adapted model using channel-wise tokenization
achieves an MSE gain of around 5.4 dB than the symbol-wise
approach at 20 dB SNR, so the channel-wise tokenization is
adopted.

3) Online Symbol-Recovery Mechanism: Two schemes for
obtaining estimated data-symbols stated in Section V-C are
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compared, depending on whether channel coding is included
in the loop. As shown in Fig. 10(a), the channel-coded and
uncoded loops achieve nearly identical performance over 0–
20 dB SNR, indicating that channel coding offers little benefit
for SSL-task learning. During online adaptation, even if the
average symbol-error rate (SER) of X̂ increases from 0.00298
to 0.0241 without channel coding, the SSL reconstruction still
remains effective. This indicates that the SSL task is robust
to SER at this level and thus both schemes can perform sim-
ilarly. Moreover, using the channel-coded loop increases the
number of FLOPs per online sample by 151.8% in Fig. 10(b).
Therefore, throughout the online adaptation process, we select
the uncoded loop.

4) Impact of Online-Adaptation SNR: The impact of
online-adaptation SNR (i.e., SNR condition of online batches)
on model performance is studied as in Fig. 11(a). When the
online-adaptation SNR drops to 0 dB, adaptation proves inef-
fective and can even degrade performance below the pretrained
model. This is mainly due to two factors: a higher SER in X̂
and stronger noise in Ŷ, both of which corrupt SSL learning.
Fig. 11(b) reports the average SER of the uncoded symbol-
recovery loop. At lower online-adaptation SNRs (≤5 dB), the
average SER exceeds 0.1, where SSL reconstruction breaks
down and provides little to no benefit to the main task. At
higher online-adaptation SNRs, the SER stays low enough
for SSL to remain effective, and the adapted model achieves
low channel-estimation MSE in high-SNR regions, while still
lagging in low-SNR regions as seen in Fig. 11(a). This
motivates the threshold-based filtering in Section V-C: we
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TABLE I
COMPARISON OF MODEL PARAMETER COUNTS (IN MILLIONS).

Model Total params(M) Online-trainable params(M)

HA03 0.147 0.147
ChannelMAE 0.206 0.126
DnCNN 0.228 0.227
HA02 0.272 N/A
ChannelNet 0.686 N/A

perform online symbol recovery only on frames with SNR
above 5 dB and use only these frames for SSL.

5) Online Data Augmentation and Model Updating: Online
data augmentation is also studied as in Fig. 12(a). Compared
with the no-augmentation case (A=1), the five-fold augmen-
tation scheme (A=5) achieves the overall largest performance
gain, drastically outperforming the 7-fold one (A=7) at 20 dB.
Thus, we adopt A=5. Furthermore, two update schemes are
compared: updating the full SSL branch versus updating only
the shared encoder. As shown in Fig. 12(b), we compute the
MSE gain of the adapted model relative to the pretrained
baseline. The encoder-only update achieves a larger MSE
improvement than updating the full branch, which justifies
our design of only adapting the shared encoder online. This is
because updating the full branch is more prone to overfitting
the encoder to the SSL objective, which in turn harms the
main task. Restricting updates to the encoder mitigates this
overfitting and better preserves the features that are shared
across the two tasks. Meanwhile, as in Table I, the encoder
contains 0.126M parameters while the full SSL branch has
0.153M parameters, and thus the encoder-only update scheme
reduces model updating cost by roughly 18%.

C. Comparison with Baselines

Table I compares the parameter counts of each model.
Memory consumption scales with parameter count under a
given floating-point quantization. Among the three architec-
tures that support online adaptation, HA03 has the smallest
overall footprint (0.147M parameters), whereas ChannelMAE
requires the fewest trainable parameters during adaptation
(0.126M). In the following, we elaborate the performance of
both offline-pretrained and online-adapted models in 3GPP-
aligned and RT channel scenarios.

1) Offline-Pretrained Model Performance: In offline 3GPP
channels shown in Fig. 13(a), ChannelMAE reduces the
channel-estimation MSE by 15.2–29.0% compared with HA02
across the whole SNR range. Also, its MSE is up to 95.1%
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Fig. 13. Evaluation of offline-pretrained models and conventional baselines
in offline channel environments.
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Fig. 14. Evaluation of online-adapted models and conventional baselines in
online channel environments.

lower than LS and up to 59.5% lower than ALMMSE.
Although ChannelNet attains a slightly lower MSE at high
SNR values of 15–20 dB than ChannelMAE, its performance
significantly drops at 0 dB SNR. In offline RT channels
shown in Fig. 13(b), ChannelMAE nearly matches the per-
formance of LMMSE and has a lower MSE than HA02 by
6.52–47.9%. Despite ChannelNet yields comparable results
to ChannelMAE, its model size is over three times larger
than ChannelMAE. These results demonstrate that Channel-
MAE achieves the state-of-the-art offline channel-estimation
performance, while maintaining a smaller model size than its
competing counterpart.

2) Online-Adapted Model Performance: For online adap-
tation, models pretrained in offline 3GPP channels undergo
adaptation in online 3GPP channels, while those pretrained
in offline RT channels are adapted in online RT channels.
These adapted models are evaluated online as seen in Fig. 14.
The online-adapted ChannelMAE significantly achieves lower
MSEs by 3.55–47.9% and 21.7–71.8% than the pretrained
one in 3GPP and RT channels, respectively. In both channel
environments, it reaches close to the performance of the super-
vised scheme using ground-truth channel coefficients, and even
slightly outperforms the supervised scheme in RT channels
thanks to online data augmentation. Compared with the state-
of-the-art online model HA03, ChannelMAE reduces MSEs
by 21.4–63.7% and 44.0–87.1% in 3GPP and RT channels,
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respectively.
3) Continual Adaptation Under Environmental Change: A

continual online adaptation process with four environmental
shifts is studied, where ChannelMAE is pretrained in City1
and then adapted online throughout City4, City2, City5, and
City3 sequentially. As shown in Fig. 15, for the first two shifts,
ChannelMAE witnesses significant MSE gains evaluated at
15 dB SNR, while the model maintains a low MSE for the
last two shifts as channel knowledge accumulates. Throughout
the adaptation process, ChannelMAE reaches close to the
supervised-learning scheme.

One may ask whether ChannelMAE can retain long-term
knowledge so that further retraining can be avoided. Our
focus, however, is effective and efficient online adaptation
in a self-supervised manner promptly whenever needed. We
do not aim to preserve long-term knowledge or explicitly
address catastrophic forgetting. Continual-learning techniques
such as experience replay could be incorporated to reduce the
adaptation frequency, but this is beyond the scope of this paper.

VII. CONCLUSION

To enable label-free online adaptation of pretrained neural
channel estimators, an SSL task was designed on top of the
original channel-estimation task. It effectively reconstructed
the masked parts of randomly-masked received frames. Both
tasks were then consolidated into a two-branch MAE model
ChannelMAE, where each branch was dedicated to one task
and two branches shared the same encoder but used separate
decoders. By online adapting this shared encoder through
optimizing the SSL-task branch, online channel-estimation
performance was significantly improved over baselines. Chan-
nelMAE is the first approach that realizes online adaptation
of neural channel estimators without ground-truth channel
coefficients, prior channel statistics, or additional pilot over-
head. The designed two-task framework shows great promise
for label-free adaptation across a broad range of wireless
applications, such as neural receivers, interference detection,
and anomaly detection.

For future work, the model architecture demands more
studies to support Multiple-Input Multiple-Output (MIMO). A
formal theoretical analysis will be developed to quantify the
synergy between the SSL objective and channel estimation.
Hardware prototyping is also planned to assess computational
cost in real-world deployments. The authors have provided
public access to their code and data at https://github.com/
tesiawang/ChannelMAE.
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