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Abstract—Wireless neural receivers provide a promising alter-
native to conventional receivers. To perform well in different
channel environments, online adaption is required. However,
during this process, performance remains low. Thus, an ap-
proach called federated collaborative learning with pruned-data
aggregation (FedPDA) is developed to reduce online-adaptation
frequency. The basic idea is that, upon online adaptation, mobile
terminals further update their neural receivers collaboratively
via federated learning. To reduce memory consumption, neural
receivers follow a main-side network architecture where only
the side network needs retraining during collaborative learning.
To avoid catastrophic forgetting during continual learning, local
data on terminals are pruned, with only a small percent sent
to the base station. With such data, the base station also trains
a neural receiver before conducting model aggregation. FedPDA
is distinct with several features: 1) small memory footprint and
no storage burden on terminals; 2) no catastrophic forgetting
issue; 3) low communication cost. Performance results show
that FedPDA reduces online adaptation by more than 90% and
memory footprint by 70%. It achieves comparable performance
as centralized schemes, but reducing communication cost by 78%.
Compared to vanilla federated learning, FedPDA resolves the
catastrophic forgetting issue without storage burden, and also
reduces the communication cost by 50%.

I. INTRODUCTION

Machine learning (ML) and deep learning (DL)-based wire-
less physical layer design serve as the cornerstone of 6G
networks. Typical examples of machine learning for wireless
communications include channel estimation [1]–[3], channel
decoding [4], [5], beamforming design [6], [7], radio resource
allocation [8], [9], etc. Particularly, neural network-based wire-
less receivers have attracted increasing attention, because it has
been shown that they can achieve promising performance [10]–
[23]. In this paper, the term “neural receiver” refers to a
receiver that uses neural networks to replace specific func-
tion modules or to completely substitute the entire receiver.
Compared to conventional receivers, neural receivers offer
the following advantages: 1) reduced pilot overhead: neural
receivers can achieve comparable performance with fewer
demodulation reference signals [11], [24], [25], particularly
in high-frequency communication scenarios [26]; 2) implicit
but accurate modeling of real-world wireless channels: by
directly learning from transmitted and received data, neural
receivers eliminate the need of explicit channel modeling and
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effectively handle complex factors such as inter-cell interfer-
ence [11], clipping noise [27], power amplifier distortion [23],
[28], and finite resolution quantization of analog-to-digital
converters [29], [30]; 3) graceful tradeoff between complexity
and performance: neural receivers can address the limitations
in scenarios where non-linear receivers become impractical
when the number of antennas is large or the linear receivers
suffer from poor performance on ill-conditioned wireless chan-
nels [31].

In a mobile network, neural receivers can be deployed
at a base station (BS) for uplink communications or at a
mobile terminal for downlink communications. This paper is
focused on downlink communications. A neural receiver is
pre-trained offline and then deployed on mobile terminals for
online use. Usually, it is impractical for the offline pre-training
dataset to encompass all possible channel conditions, so the
pre-trained neural receiver may not perform well in varying
channel environments. Thus, it is indispensable for the neural
receiver to conduct online adaptation to enhance demodulation
performance [13]–[15], [17], [18], [20], [21], [27]. However,
during the process of online adaptation, the neural receiver can
only deliver a low data rate due to degraded demodulation
performance, which negatively impacts user experience. To
ensure positive user experience, it is crucial to reduce the
frequency of online adaptation for neural receivers. To this
end, a key insight can be considered: if the neural receiver of
a terminal can acquire channel knowledge from other terminals
while retaining its own, then it does not need online adaptation
under a new channel environment that have been encountered
before either by other terminals or itself.

The above insight can be realized through collaborative
learning among neural receivers at different mobile terminals,
which illustrates the advantage of neural receiver than a con-
ventional receiver. More specifically, after a neural receiver has
completed online adaptation in response to deteriorated per-
formance, it further collaborates with other neural receivers to
share channel knowledge of all environments encountered by
these receivers. Such collaborative learning can be conducted
via a centralized approach. However, uploading the entire
dataset of online adaption to the BS leads to a huge volume of
uplink communication data, which is unacceptable for mobile
terminals due to high cost and power consumption. Thus, a
decentralized collaborative learning method is preferred over
a centralized approach. Considering the point-to-multipoint
setup of a BS and its associated mobile terminals, a natural



choice of decentralized collaborative learning is federated
learning, i.e., each terminal trains its neural receiver locally but
the model parameters are sent to the BS for aggregation. How-
ever, methods based on vanilla federated learning [12] cannot
be adopted, as they lack a few capabilities that are critical
for efficient collaborative learning among terminals. First, the
neural network architecture must support efficient retraining.
Particularly, retraining of a neural receiver cannot demand a
large memory footprint, as it is carried out on a resource-
constrained mobile terminal. Second, continual learning must
be achieved implicitly, as a neural receiver keeps learning new
dataset corresponding to different channel environments due to
mobility. Thus, the catastrophic forgetting issue, which refers
to the tendency of forgetting previously acquired knowledge
while learning from new training instances [32], needs to be
addressed properly. Keeping all datasets for a neural receiver
can avoid the catastrophic issue, but is apparently not accept-
able, because of limited storage on a mobile terminal.

To this end, an approach called federated collaborative
learning with pruned-data aggregation (FedPDA) is developed
in this paper. To reduce memory consumption, the structure
of a neural receiver is designed by considering a main-side
neural network architecture [33]. The design goal is to achieve
memory-efficient training of the neural receiver. Thus, a side-
assisted neural receiver called SaRx is developed such that
only the side network of the neural receiver needs retraining
during collaborative learning, while the main network keeps
same parameters of a pre-trained model. In this way, the
training process of a neural receiver only requires a small
memory footprint.

To resolve the catastrophic forgetting issue without causing
storage burden to terminals, it is necessary to seek help
from the federated server (on the BS or co-located with
the BS) to remember the previous channel knowledge of all
neural receivers on terminals. The existing federated learning
framework does not hold such a capability, so it must be
renovated in two aspects: 1) the federated server needs to
obtain the previous channel knowledge from terminals; 2)
the server needs to maintain its own neural receiver model
to capture the obtained channel knowledge. The first aspect
of renovation must be communication-efficient, so the dataset
on a terminal cannot be fully uploaded to the server. Thus,
a data pruning method is designed to select the top data
instances whose importance is measured by its inference loss
with respect to the latest global model. In this way, only a
small percent of data is sent to the base station, and the
remaining data is purged from local storage. In the second
aspect of renovation, the server must use the same neural
network structure as that of mobile terminals, and also follows
the same retraining method as that in SaRx. Moreover, model
aggregation on the server must include the side networks
from mobile terminals and the sever itself. With the above
two renovations, FedPDA gracefully resolves the catastrophic
forgetting issue with low communication cost in uplink and
no storage burden on terminals. It should be noted that, even
though this solution compromises the data privacy of federated

learning in principle, it is not a concern, as sharing channel
knowledge between the BS and mobile terminal is a common
practice in wireless communications.

Overall, FedPDA is distinct with several features: 1) small
memory footprint, as only a side network of the neural
receiver needs retraining on terminals; 2) no catastrophic for-
getting issue, as continual learning is achieved by a renovated
federated learning framework; 3) no storage burden, as the
dataset on terminals is continuously pruned and purged; 4) low
communication cost, as only model parameters and a small
percent of channel data are sent to the BS.

The following contributions are made in this paper:

• A federated collaborative learning approach called Fed-
PDA is developed to share channel knowledge of different
neural receivers. It can significantly reduce occurrence
frequency of online adaptation of neural receivers, which
thus greatly improves performance of neural receivers
under varying channel environments.

• A side-assisted neural network structure called SaRx is
incorporated into FedPDA to enable memory-efficient
training of neural receivers.

• The federated learning framework in FedPDA is ren-
ovated to resolve the catastrophic forgetting issue for
continual learning with high storage efficiency.

Additionally, simulation experiments are carried out to
validate effectiveness of FedPDA. Performance results show
that, FedPDA reduces memory footprint by 70% via the SaRx
structure. Furthermore, the occurrence frequency of online
adaption is decreased by more than 90%. FedPDA achieves
comparable performance as centralized schemes, but reduce
communication cost by 78%. As compared to vanilla federated
learning schemes, FedPDA can carry out continual learning
without catastrophic forgetting and does not impose storage
burden on terminals, with a price of a slightly increased
communication cost.

The rest of this paper is organized as follows. The system
model and setup is presented in Section II. The detailed design
of FedPDA is described in Section III. Performance evaluation
is conducted in Section IV. The paper is concluded in Section
V.

II. SYSTEM MODEL AND SETUP

A. OFDM Transceiver and Channel Model

Overall, single-input single-output (SISO) downlink com-
munication scenario is considered, which implies that both
the number of transmit antennas and receive antennas are
limited to one. A conventional OFDM transmitter is adopted.
Signals propagating in a wireless channel are impacted by
two components: 1) channel attenuation, which can be char-
acterized by a model such as 3GPP tapped delay line (TDL)
models [34], and 2) Gaussian white noise. As shown in Fig. 1,
a frequency-domain end-to-end neural receiver structure is
adopted. It replaces the entire demodulation module of con-
ventional receivers by a single neural network.



Fig. 1: Illustration of a fully learned neural receiver.

B. Online Adaptation Process

The actual process of online adaptation is separate from
the work of this paper. However, for the purpose of clarity, a
simple procedure of online adaptation is provided as follows.
In general, online adaptation of a neural receiver is comprised
of three steps. In the first step, when a terminal encounters a
new channel condition where the bit error rate (BER) exceeds
a predefined threshold, it sends an adaptation request to the
BS. In the second step, after the BS receives the adaptation
request, it sends the adaptation reference signals (ARSs) back
to the terminal. The original form of these signals can be
represented as {Q(i), i = 1, 2, . . . , Nq}, where Nq denotes the
total number of ARSs. In fact, the ARSs are pre-defined bit
streams that are transmitted in some allocated resource blocks,
interleaving with regular communication data. In the third
step, the terminal gets the received signal Y(i) as well as the
demodulation reference signal P(i), both in frequency domain.
Thus, it can form a new dataset D = {(Z(i),Q(i))}Nq

i=1, where
Z(i) is the concatenation of Y(i) and P(i). Based on this new
dataset, the neural receiver is retrained.

After the parameters of the neural receiver are updated,
BER is expected to decrease below the specified threshold,
and finally online adaptation is completed.

C. Channel Knowledge Fusion Process

For the sake of simplicity, we consider a scenario where
Nu terminals are communicating with a single base station S,
but it should be noted that the approach developed in this
paper can also be applied to scenarios with multiple base
stations. The overall timeline is divided into intervals denoted
as [t0, t1, t2, ...]. The offline pre-trained model is obtained
before time t0, and each neural receiver is deployed with
a model θG,t0 at t0. During the time interval from tk−1 to
tk, the terminals who have completed online adaptation and
possess new channel knowledge for sharing are referred to as
critical terminals, denoted by Gtk . The proportion of critical
terminals among all is known as the critical ratio, denoted by
γtk =

NGtk

Nu
, where NGtk

is the number of critical terminals
during tk−1 ∼ tk.

During each time interval, all critical terminals that have
completed online adaptation follow an approach to share and
fuse their channel knowledge. This approach is expected to
obtain an updated global model, denoted as θG,tk , for all
neural receivers. The process and the necessity of channel
knowledge fusion are explained in a simple scenario shown
in Fig. 2 where one time interval is illustrated in details.

Assuming that, prior to time t0, the BS has completed offline
training using a dataset collected from channel environment
E0, and subsequently has distributed the pre-trained model
parameters θG,t0 to all terminals.

During the time interval from t0 to t1, terminals denoted as
group G1 move from environment E0 to environment E1, and
the rest remain in E0. Since terminals arriving at the new
environment E1 may experience performance degradation,
online adaptation is needed, as illustrated by the first box in
interval t0 ∼ t1. Upon online adaptation, these terminals work
together to share their latest channel knowledge with the BS
and other terminals, and then an updated global model with
parameters θG,t1 is obtained at the BS, which is illustrated by
the second box in interval t0 ∼ t1. Finally, the updated model
is distributed to all terminals in environments E0 and E1, as
shown in the third box in interval t0 ∼ t1. Thus, starting at t1,
neural receivers on all terminals are expected to perform well
in environments E0 and E1, even if the terminals that remain
in E0 have not yet experienced the new environment E1. In
other words, those terminals will not need online adaptation
again if they arrive in the new environment E1. As the above
process continues, online adaptation frequency is significantly
reduced.

To enable such a promising capability, it is critical to
develop a collaborative learning approach to fuse channel
knowledge of critical terminals and obtain a global neural
receiver model for all terminals located in different channel
environments.

III. FEDERATED COLLABORATIVE LEARNING WITH
PRUNED-DATA AGGREGATION

As mentioned in Section I, collaborative learning for chan-
nel knowledge fusion needs to consider several design require-
ments, i.e., small memory footprint, no catastrophic forgetting,
no extra storage burden, and low communication cost. Neither
centralized schemes nor vanilla federated learning schemes
are effective to satisfy all such requirements. To this end, an
approach called federated learning with pruned data aggrega-
tion (FedPDA) is developed in this section to handle all such
requirements effectively.

A. Overall Architecture

As explained in Section I, FedPDA is designed based on
the federated learning framework but with two renovations.
First, the neural network structure is designed with a main-
side architecture, such that retraining of a neural receiver is
memory efficient. Second, local dataset used for training a
neural receiver at a terminal is pruned to a small percent and
then sent to the BS, while the rest is purged. Such a small
percent of data accumulate at the BS and help the BS learn the
knowledge of all previous channel environments encountered
by terminals.

Based on these two renovations, FedPDA is developed with
the following key functionalities: 1) side network-assisted
neural receiver (SaRx) for memory-efficient model retraining;
2) channel knowledge fusion, in which the BS and the crit-
ical terminals collaborate to fuse latest and previous channel
knowledge; 3) global dataset updating, in which local dataset
at terminals are pruned and purged, but the global dataset at
the BS is enriched with pruned data from terminals.



Fig. 2: Illustration of the system configuration.

(a) Channel knowledge fusion

(b) Global dataset updating

Fig. 3: The overall procedure of FedPDA

To consolidate these functionalities, the overall procedure
of FedPDA is illustrated in Fig. 3. During the channel fu-
sion stage (Fig. 3(a)), the critical terminals conduct training
collaboratively following a federated learning paradigm, but
with two distinct features. First, all neural receivers should
follow the SaRx structure. Second, the BS also trains its
own neural receiver using the global dataset. Through model
aggregation between the BS and critical terminals, a global
model is obtained and then distributed to all terminals. During
the global dataset updating stage (Fig. 3(b)), each critical user
prunes its local dataset obtained in online adaptation. The
pruning process follows a certain metric such as inference loss
to select the most important instances, and then uploads the
selected instances to the BS. In order to keep communication
cost low, the data pruning process must ensure a desired data
pruning ratio λ is satisfied. Once the BS receives the updated
data instances, it merges such pruned data with previous ones
on the global dataset. As a result, the global dataset is enriched
to record the channel knowledge of all historical channel
environments.

B. Side-Assisted Neural Receiver Structure

As shown in Fig. 4, SaRx consists of two parts: the main
network fm(·;θm) and the side network fs(·;θ

s). In this pa-
per, both the main network and the side network in SaRx adopt
the fully convolutional neural network structure. The main
network consists of 1 input convolutional layer, 11 separable
residual blocks (SRB) [35], and 1 output convolutional layer.
Each SRB consists of 2 depthwise separable convolutional
layers and 2 layer normalization (LN) layers [11]. The side

Fig. 4: Illustration of the side-assisted neural receiver structure.

network is a lightweight version of the main network, where
the size of the convolutional kernels in the side network are 1

ϵ
times of those in the main network (ϵ is the reduction factor,
e.g., ϵ = 2, 4, 8).

The main network and side network are connected by the
skip connections, i.e., 1 × 1 trainable convolutional layers,
which are located at the output of each convolutional layer
except the input layer as shown in Fig. 4. The input of SaRx
(denoted as Z) is the concatenation of the frequency domain
received signal Y and the frequency domain DMRS P. It
is then fed into both the main network and side network,
respectively. The final output is obtained by aggregating the
outputs of these networks, expressed as

f(Z;θm,θs) = fm(Z;θm) + fs(Z;θ
s). (1)

The main network is pre-trained using offline collected dataset
and its model parameters θm are fixed after being deployed;
Only the model parameters of the side network θs are updated
during collaborative learning.

Since the memory usage during neural network training is
mainly determined by the amount of intermediate activations
in gradient back propagation [33], the amount of intermediate
activations in SaRx is reduced by approximately 1

ϵ times by
employing smaller convolution kernels in the side network.



(a) Channel knowledge fusion stage.

(b) Global dataset updating stage.

Fig. 5: Illustration of the developed FedPDA approach.

SaRx is trained with the binary cross-entropy (BCE) loss,
which calculates the difference between each ARS and its
corresponding output log-likelihood ratios (LLRs) as follows:

J (m)
BCE =

1

NtNfK

Nt−1∑
i=0

Nf−1∑
j=0

K−1∑
k=0

(Q
(m)
i,j,k log(L̂

(m)
i,j,k)+

(1−Q
(m)
i,j,k) log(1− L̂

(m)
i,j,k))

(2)

where m is the sample instance, K represents the modulation
order, Q

(m)
i,j,k is the k-th transmitted bit on the resource

element (i, j), Nt is the number of OFDM symbols, and
Nf is the number of subcarriers. L̂(m)

i,j,k is given as L̂
(m)
i,j,k =

sigmoid(L
(m)
i,j,k) =

1

1+e
−L

(m)
i,j,k

, where L
(m)
i,j,k is the LLR of k-th

transmitted bit on the resource element (i, j).

C. Channel Knowledge Fusion

The channel knowledge fusion stage is illustrated in
Fig. 5(a). At the beginning of round r, the BS selects all
the critical terminals Gtk to participate in channel fusion.
Subsequently, each critical terminal u ∈ Gtk updates the global
model of previous round θs

r,G using its local adaptation dataset
Du to obtain θs

r,u. Meanwhile, BS updates the global model
of last round θs

r,G using the global dataset DS,tk−1
and then

obtains θs
r,S .

Subsequently, the critical terminals send the updated models
{θs

r,u, u ∈ Gtk} to the BS where these models are aggregated
together with the BS-side model θs

r,S to obtain the updated
global model θs

r+1,G, as

θs
r+1,G = αSθ

s
r,S + (1− αS)

∑
u∈Gtk

|Du|∑
u∈Gtk

|Du|
θs
r,u, (3)

where αS ∈ (0, 1) is the BS-side model aggregation ratio.
These steps are repeated for RP rounds, and finally an updated
global model θs

G,tk
is obtained.

D. Global Dataset Updating
The global dataset updating stage is illustrated in Fig. 5(b).

When the channel knowledge fusion stage is completed, the
global model parameters θs

G,tk
incorporating the latest channel

knowledge are distributed to all terminals. Subsequently, each
critical terminal u ∈ Gtk needs to remove the unimportant
training instances from its local adaptation dataset Du to obtain
a pruned adaptation dataset D′

u. The BS collects the pruned
adaptation dataset {D′

u, u ∈ Gtk} from all critical terminals
and then merges it with the current global dataset DS,tk−1

.
Afterwards, the global dataset is updated to DS,tk .

To measure the importance of a training instance, its in-
ference loss with respect to the latest global model θs

G,tk
is

employed. The underlying rationale is that training instances
with larger inference loss hold greater significance, as they are
more likely to be misclassified by the model and can provide
more information about the wireless channel. Research in [32]
demonstrates that training instances with higher inference loss
exhibit a greater likelihood of being forgotten by the model.

As shown in Fig. 5(b), each training instance (Z
(i)
u ,Q

(i)
u ) of

user u is fed into the latest global model to get the inference
loss J (i)

u , which is computed based on Eq. (2). Denote the
indices of training instances in Du as [n] = [0, 1, . . . , |Du|].
The pruned adaptation dataset D′

u is obtained by selecting the
top Kp instances with the largest inference loss, i.e.,

D
′

u = {(Z(j)
u ,Q(j)

u ), j ∈ arg max
I⊂[n]:|I|=Kp

∑
i∈I

J (i)
u }, (4)

where Kp = (1− λ) |Du|, and λ ∈ (0, 1) is the data pruning
ratio.

E. Parameter Selection for Communication Efficiency
With the above design, FedPDA is advantageous over the

vanilla federated learning schemes in memory efficiency and
continual learning. However, how to ensure communication
efficiency of FedPDA depends on appropriate selection of
key parameters such as iteration rounds of federated learning,
model size of the side network, the data pruning ratio, etc.
Otherwise, the communication cost can be much higher than
that of vanilla federated learning schemes or even higher than
centralized schemes.

Given Nu terminals, the cost involved in uplink and down-
link communications during the time interval between tk−1

and tk is analyzed for different schemes. Without loss of
generality, the total number of ARSs Nq for online adaptation
is assumed to be constant, and adaptation dataset Du for each
terminal is assumed to have the same size SD = |Du|.

Considering FedPDA, if the number of critical terminals in
the given time interval is Gtk and the critical ratio is γtk , then
the communication cost CP

γtk
can be derived as

CP
γtk

= 2RP |Gtk | |θ
s|+ |Gtk | (1− λ)SD

= γtkNu (2RP |θs|+ (1− λ)SD) ,
(5)



where RP is the number of iteration rounds in federated
learning, and λ is the data pruning ratio, which is assumed
to be same for all terminals. Moreover, |θs| is the model size
of the side network in FedPDA.

For a centralized scheme, its communication cost CC
γtk

is
simply given as

CC
γtk

=
∑

u∈Gtk

SD = γtkNuSD. (6)

Considering a vanilla federated learning scheme, its com-
munication cost CF

γtk
can be derived as

CF
γtk

= 2NuRF

∣∣∣θf
∣∣∣ , (7)

where
∣∣∣θf

∣∣∣ is the model size of the entire neural receiver,
and RF represents the number of iteration rounds in federated
learning.

To ensure the communication cost of FedPDA is lower than
that of the centralized scheme, we need CP

γtk
< CC

γtk
. From

Eq. (5) and Eq. (6), we know that the pruning ratio λ should
satisfy

λ > 1/ξP, (8)

where ξP = SD

2RP |θs| .
Since λ < 1, Eq. (8) is always satisfied as long as ξP > 1,

which means the model size of the side network should satisfy
the following condition

|θs| < SD/2RP . (9)

According to the ablation study mentioned in Section IV,
RP = 30 is sufficient even under highly diverse channel condi-
tions. Furthermore, the ablation study shows that a minimum
of Nq = 6400 ARSs is required to ensure optimal online
adaptation performance. This leads to an adaptation dataset
size SD = 616.4 MB for a typical 5G resource allocation
with 14 OFDM symbols and 264 subcarriers. Since the model
size |θs| is usually much less than 10 MB, the condition in
Eq. (9) can be easily satisfied.

To make sure the communication cost of FedPDA is lower
than that of a vanilla federated learning scheme, we need
CP

γtk
< CF

γtk
. Thus, from Eq. (5) and Eq. (7), we know that

the critical ratio γtk should satisfy

γtk <
2RF

∣∣∣θf
∣∣∣

2RP |θs|+ (1− λ)SD
. (10)

Obviously, the above condition is not always satisfied. How-
ever, by using the values found in Section IV for parameters
RP , SD, RF , |θs|, and

∣∣∣θf
∣∣∣, the condition in Eq. (10) can

be satisfied when the data pruning ratio λ exceeds 0.90. For
a lower data pruning ratio, e.g., λ = 0.80, the communication
cost of FedPDA is slightly higher than that of a vanilla scheme.

IV. PERFORMANCE EVALUATION

Experiments are carried out in three aspects. The first
one is to validated if FedPDA can effectively reduce online-
adaptation frequency. The second aspect is the evaluation
of memory footprint for the SaRx structure. Comparisons
between our proposed SaRx structure and the original structure
are illustrated in terms of memory usage. Our strategy of
pruning skip-connections between the main network and the
side network is also studied to further reduce the memory
footprint. The third aspect is to evaluate overall performance
of FedPDA. Comparisons with both centralized and vanilla
federated learning schemes are also conducted. Two types
of vanilla federated learning are considered: 1) “Vanilla
Federated-N”, i.e., the vanilla federated learning scheme that
only records the channel data of the most recent environment;
2) “Vanilla Federated-S”, i.e., the federated learning scheme
that stores channel data of all encountered environments. In
addition, the conventional receiver (LMMSE channel estimator
and LMMSE constellation equalizer) and the receiver with
perfect channel state information (CSI) are also considered as
benchmarks.

A. Experiment Setup

All of our experiments are conducted using the open-
source link-level simulation library Sionna 0.14.0 [36]. Train-
ing and testing of a neural receiver model are conducted
using TensorFlow 2.11.1 [37], and we use the TensorFlow
Profiler to track the hardware resource consumption (time and
memory) of neural receiver models. BER is considered as the
performance metric for evaluating different types of receivers.
More specifically, the coded BER is considered, which is
obtained by passing LLRs through the 5G low-density parity-
check (LDPC) decoder and then comparing the decoded bits
to the original bit streams.

The channel environments are simulated following a type of
TDL channel model. The channel impulse response of such a
model is expressed as

h(t, τ) =

n∑
i=1

ai(t)δ(τ − τi), (11)

where ai(t) represents the amplitude of the ith tap at the delay
of τi, which is generated using a sum-of-sinusoids model [38].
Given such a channel model, three distinct channel environ-
ments are simulated: 1) The offline environment E0, which
follows the indoor office normal delay profile; 2) The online
environment E1, which follows the Urban Macrocell (UMa)
normal delay profile; 3) The online environment E2, which
follows the Rural Macrocell (RMa) normal delay profile. The
detailed simulation parameters of these channels are shown
in Table I.

B. Reduction of Online-Adaptation Frequency

To demonstrate the effectiveness of reducing online-
adaptation frequency by FedPDA, a metric called reduction
ratio is adopted. It stands for the percentage of online adapta-
tions that are reduced by FedPDA. we assume that there are



Fig. 6: Online adaptation frequency versus the number of
environment change Nc.

Nu = 24 terminals, and each terminal can only encounter a
single online channel environment (whether new or old) during
each time interval tk−1 ∼ tk, where k is the index of an
interval. At the end of time interval tk, collaborative learning
is conducted among all terminals if online adaptation occurs in
time interval tk−1 ∼ tk. The average reduction ratio of online
adaptations for one terminal is shown in Fig. 6. It indicates
that, after experiencing a sufficient number of different channel
environments (e.g., 10), the average reduction ratio of online
adaptations can quickly reach 90%.

C. Memory Footprint

In this experiment, only one neural receiver is considered,
and memory consumption is evaluated while the neural re-
ceiver is being retrained. The experiment is conducted on a
server with Intel (R) Core (TM) i9–10900KF CPU @3.70GHz
and NVIDIA GeForce GTX 3090 GPU. Moreover, only two
environments are considered, i.e., the offline environment E0

and online environment E1. The offline pre-trained dataset
consists of 108, 800 transmission time intervals (TTIs), which
are randomly generated based on the offline environment E0.
The online adaptation dataset consists of 6400 TTIs that
are randomly generated using the online environment E1.
The main network is pre-trained using the offline pre-trained
dataset(using Adam optimizer with learning rate 0.001, batch
size 32, and 30 epochs).

The SaRx with full skip connections scheme (SaRx-FSC)
is considered first, where each convolution layer of the side
network is connected to the corresponding layer of the main

(a) Testing results of the E2E, SaRx-
FSC, and SaRx-NSC schemes.

(b) Testing results of the SaRx-FSC,
SaRx-LSC, and SaRx-RSC schemes.

Fig. 7: Performance of various SaRX schemes.

Fig. 8: The testing results of peak memory usage and batch
training time.

network through a skip connection. In addition, two baselines
are considered for comparison: 1) the entire network scheme
(E2E), where both the model parameters of the main network
and side network need to be trained online; and 2) the SaRx
with no skip connections scheme (SaRx-NSC), which means
that there are no intermediate skip connections between the
main network and side network, and only the outputs of the
main network and side network are added to generate the
final output. The SaRx-NSC scheme has the same number of
trainable parameters as SaRx-FSC, ensuring a fair comparison.
The configurations for the model structure of these three
schemes are listed in Table. II. The Adam optimizer is utilized
with a learning rate of 0.001, a batch size of 32, and 30 epochs
for all these schemes.

The BER testing results of E2E, SaRx-FSC, and SaRx-
NSC are depicted in Fig. 7(a). The testing dataset consists
of 28, 800 randomly generated TTIs based on the online
environment E1. The results indicate that the E2E performs
the best among all schemes, while SaRx-FSC achieves nearly
identical performance to E2E. The SaRx-NSC scheme exhibits
the poorest performance due to its lack of information from
the main network. This findings suggest that the information
from the main network is crucial for learning in the side
network, and by incorporating this information, SaRx with
full skip connections can achieve comparable performance as
the E2E scheme. The peak memory usage and average batch
computation time results of SaRx-FSC scheme and the E2E
scheme are shown in Fig. 8. The results indicate that the
SaRx-FSC scheme exhibits an average reduction of 61.96%
in memory footprint and achieves an average reduction of
32.70% in average batch computation time, as compared to
the E2E scheme.
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Fig. 9: ℓ1-norm value for updated model parameters of each
SRB in the side network.

Fig. 10: Catastrophic forgetting of vanilla federated ap-
proaches.

To further evaluate the SaRx-FSC scheme with respect to
different SRBs, we obtain the average ℓ1-norm of the updated
model for each SRB in the side network as

χk =
∥θ(n)

SRBk
− θ

(0)
SRBk

∥
1

|θ(n)
SRBk

|
, (12)

where θ
(0)
SRBk

represents the initial parameters of the k-th
SRB, and θ

(n)
SRBk

denotes the final model parameters of the
k-th SRB after n = 30 epochs of training. The results are
shown in Fig. 9, indicating that the right-sided SRBs have a
higher number of updates compared to the left-sided SRBs.
Therefore, the right-sided skip connections are considered
more important in ensuring that the side network can receive
sufficient information about the high-level features from the
main network.

Based on these results, SaRX-FSC can be further simplified
by pruning less important SRBs. Two schemes are considered:
1) the left-sided skip connection (SaRx-LSC) scheme, in
which only the left-sided skip connections are retained; and
2) the right-sided skip connection (SaRx-RSC) scheme, in
which only the right-sided skip connections are retained. The
BER testing results depicted in Fig. 7(b) demonstrate that
SaRx-RSC exhibits comparable performance to SaRx-FSC,
while the SaRx-LSC scheme demonstrates poor performance.
Furthermore, the results depicted in Fig. 8 demonstrate that
the SaRx-RSC scheme can further reduce memory usage (by
approximately 68.69%) and average batch computation time
(by approximately 36.97%), as compared to the SaRx-FSC
scheme.

D. Overall Performance Evaluation

All three environments E0, E1, and E2 are considered in
this set of experiments. Offline pre-trained dataset consists of
108, 800 TTIs, which are randomly generated based on offline
environment E0. Moreover, 24 terminals originally stay in

(a) Testing results on environment
E1.

(b) Testing results on environment
E2.

Fig. 11: Performance of mitigating catastrophic forgetting.

environment E0. At time t0, 12 terminals (as the first group)
move to environment E1, and at time t1, the remaining 12
terminals (as the second group) move from E0 to E2. Thus,
γt1 = γt2 = 0.5. For each terminal in both groups, the
online adaptation dataset consists of Nq = 6400 TTIs of data,
resulting in a dataset size of SD = 616.40 MB. For FedPDA,
the number of federated rounds in the channel knowledge
fusion stage is set to RP = 30, and each terminal conducts
5 local iterations in every federated round. For the vanilla
federated approach, the number of federated rounds RF is
also set to 30, and each user conducts 5 local iterations in
every federated round. The above values of Nq , RP , and RF

are determined based on a separate set of experiments, but
details are not included here due to page limit.

The neural network in FedPDA employs the SaRx-RSC
structure, resulting in a side network model size of 0.522
MB. SaRx is not considered in the centralized scheme and
the vanilla scheme. Three different data pruning ratios are
considered for FedPDA: λ = 0.80, λ = 0.90, and λ = 0.95.

1) Catastrophic Forgetting and BER Performance: To eval-
uate the impact of catastrophic forgetting, the final updated
global model at time t2 is tested in environment E1. The re-
sults in Fig. 10 show that the performance of a neural receiver
based on federated learning can be significantly impaired by
catastrophic forgetting, if previous channel knowledge is not
retained (i.e., using “Vanilla Federated-N”).

To compare performance of different approaches to miti-
gating the catastrophic forgetting, testing results of the neural
receiver in environments E1 and E2 are illustrated in Fig. 11(a)
and Fig. 11(b), respectively. The testing datasets of envi-
ronments E1 and E2 consist of 28, 800 randomly generated
TTIs, respectively. Results in Fig. 11(a) show that FedPDA
(λ = 0.80, αS = 0.50) achieve comparable performance as the
vanilla federated, even if it does not store any data of previous
channel knowledge. Moreover, the performance of FedPDA is
only slightly lower than the centralized approach. Results in
Fig. 11(b) show that FedPDA (λ = 0.80, αS = 0.50) can
achieve the same performance as both the centralized approach
and the federated approach. These results indicate that all three
approaches can effectively integrate the knowledge of envi-
ronment E2 while retaining previous channel knowledge of
environment E1. Thus, when terminals located in environment
E2 now move to environment E1, real-time adaptation is not



(a) Testing results on E1 with
different pruning ratios.

(b) Testing results on E2 with
different pruning ratios.

(c) Testing results on E1 with
different aggregation ratios.

(d) Testing results on E2 with
different aggregation ratios.

Fig. 12: The testing results of FedPDA with respect to different
pruning ratios and model aggregation ratios.

required, thus reducing the frequency of online adaptation.
Next, we investigate the impact of data pruning ratio λ

on the performance of mitigating catastrophic forgetting for
FedPDA. Three different values of λ (0.80, 0.90 and 0.95)
are considered. The corresponding results shown in Fig. 12(a)
demonstrate that FedPDA remains unaffected even when up
to 90% of the local dataset is pruned. A pruning ratio of
95% leads to a noticeable decline in performance, but it
remains within an acceptable range. The testing performance
on environment E2 is not sensitive to the data pruning ratio,
as shown in Fig. 12(b). Hence, a large data pruning ratio
up to 0.95 can be applied with little impact on the overall
performance.

The impact of aggregation ratio αS on the performance of
FedPDA is also investigated. As indicated in Fig. 12(c), the
effectiveness of preventing catastrophic forgetting is limited
when αS is small. This is because a small model aggregation
ratio can result in inadequate integration of channel knowledge
from previous environment E1 into the global model. When
αS is larger, such as 0.8, prevention of catastrophic forgetting
works well; however, there is a degradation in the performance
of the final global model on environment E2, as depicted in
Fig. 12(d). Therefore, the performance of FedPDA is related to
the aggregation ratio at the BS model, making it an important
hyper-parameter.

2) Communication Cost and Storage Occupancy: The pre-
vious section demonstrates that all three approaches effectively
address the issue of catastrophic forgetting, but their demands
on communication cost and local storage are different.

The communication cost of different approaches is illus-
trated in Fig. 13. Both uplink and downlink communica-
tions are included. It can be observed that FedPDA exhibits
significantly lower communication cost as compared to the

(a) Communication cost from time
t0 = 0 to t1 = 1h.

(b) Communication cost from time
t1 = 1h to t2 = 2h.

Fig. 13: Communication costs of three approaches.

Fig. 14: Training data storage in three approaches.

centralized approach (e.g., 74.9% reduction with λ = 0.80,
and 84.9% reduction with λ = 0.90 in Fig. 13(b). It also
outperforms the vanilla federated approach by highly reducing
the communication cost, e.g., 50.0% with λ = 0.90 in
Fig. 13(a) and 74.7% with λ = 0.90 in Fig. 13(b). The
performance gain over the vanilla approach is achieved, mainly
because of using a much smaller neural network model (i.e.,
the SaRx structure).

The amount of stored channel data on terminals is shown
in Fig. 14. Initially, the local data storage is low for all
three approaches. However, as one round of channel fusion
is completed, data storage of the vanilla federated approach
doubles, since it needs to record channel data of all encoun-
tered environments. Thus, even though Vanilla Federated-S
mitigates catastrophic forgetting, but imposes a large storage
burden on terminals. In contrast, FedPDA does not have such
an issue.

V. CONCLUSION

A federated learning-based approach with pruned data ag-
gregation called FedPDA was developed to facilitate collab-
orative training among terminals. It effectively prevents for-
getting of previously learned channel knowledge. FedPDA is
distinct from existing approaches with three features: 1) much
smaller memory footprint because of a novel neural receiver
structure named SaRx; 2) much lower communication cost, as
compared to the centralized approach; 3) no storage burden
on terminals and lower communication cost, as compared to
the vanilla federated approach. More diverse channels and
real-world datasets with different modulation schemes will
be evaluated in the future work, which helps reveal more
benefits of FedPDA. Additionally, how to incorporate model
personalization into FedPDA is an interesting topic for future
research. The authors have provided public access to their code
at https://github.com/pocketmaster123/FedPDA.
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