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Abstract—A pre-trained neural receiver does not perform well
in all channel environments, so online retraining is necessary.
To acquire channel knowledge efficiently, collaborative learning
among multiple neural receivers is indispensable. To this end,
a graph-based collaborative learning scheme called GraphRx
is developed to retrain uplink neural receivers collaboratively
among base stations (BSs). First, considering a collaboration
graph among BSs, GraphRx is formulated as a personalized
federated learning problem, wherein the graph weights and
neural receiver models are learned together so that generalization
and personalization are jointly optimized. Second, the problem
is solved through an alternating approach under the federated
learning paradigm. Particularly, an approximate generalization
bound is derived to enable graph optimization at the server
without accessing local data on BSs. To reduce overhead of
training pilots, data augmentation is employed. GraphRx is eval-
uated via extensive simulation. Key parameters of GraphRx are
first found through ablation study. Next, the effectiveness of the
approximation in the generation bound is validated. Comparisons
with the state-of-the-art schemes are finally conducted. Results
show that, given the same coded bit error rate, GraphRx achieves
a SNR gain of 0.4 ∼ 0.9 dB and 0.5 ∼ 2.1 dB for the cases
without and with inter-cell interference, respectively.

I. INTRODUCTION

The sixth-generation (6G) communication networks are
expected to be AI-empowered. Particularly, the neural network
based wireless receiver, named neural receiver, is one of
the most promising solutions for 6G receiver design [1]. As
shown in Fig. 1, in a neural receiver, the channel estimator
and detector are replaced by a neural network that takes
the frequency-domain receive signals as inputs and outputs
the soft-detection bits. By implicitly and accurately capturing
real-world channels [1], neural receivers can significantly
outperform the traditional ones.

In this paper, uplink neural receivers located at base stations
(BS) are considered to detect the uplink orthogonal frequency
division multiplexing (OFDM) signals from user terminals. As
a common practice, a neural receiver is offline pretrained and
then deployed online [2]. However, the pre-trained model may
not generalize well to online channel environments, as there
exists discrepancy in data distributions between offline and
online environments [2], [3]. To this end, online knowledge
acquisition for neural receivers becomes a necessity to allevi-
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Fig. 1. Uplink neural receiver.

ate performance degradation in various channel environments.
In other words, neural receivers need to be retrained online.

While online retraining of uplink neural receivers has been
studied in [2]–[5], collaborative online retraining among mul-
tiple BSs has gained increasing attention recently [6]. In a
collaborative learning framework, each BS collaborates with
other BSs to learn its neural receiver under the coordination
of a central server, such that the knowledge accumulated
in the entire multi-cell network can be exploited. Multi-BS
collaborative learning holds two key advantages as compared
to single-BS local learning. First, it overcomes the problem
of limited observation of channel instances in local learning.
Through collaborative learning, the neural receiver in a cell
enriches its online knowledge by learning data distributions
from other cells, so the model generalization ability is en-
hanced. Second, collaborative learning helps neural receivers
to improve the capability of handling inter-cell interference. As
such interference encodes other cells’ channel information, a
neural receiver with multi-cell channel knowledge can better
grasp the statistical features of interfered signals.

To fulfill online collaborative learning for uplink neural
receivers among multiple cells, it is necessary to design an
appropriate collaboration mechanism. A straightforward one
is to consider centralized learning where multi-cell data are
gathered in one server. However, this strategy is not always
desirable for two main reasons. First, there exists a privacy
concern [7], as physical layer data at a BS are not supposed
to be exposed to an entity in the cloud, unless a cloud
radio access network (RAN) is considered. Second, centralized
learning demands a costly server with abundant storage and
computing resources. Therefore, it is more desirable to develop
a distributed collaborative learning scheme that keeps the data
locally. A common framework that can be adopted is federated
learning (FL) [6], [8], where a global model is learned with



locally-held data. However, due to data heterogeneity across
cells, the unified global model may perform even worse than
the local models, which indicates a lack of personalization.

To achieve proper tradeoff between generalization and
personalization, a graph-based collaborative learning scheme,
called GraphRx, is developed for uplink neural receivers in
this paper. First, GraphRx is formulated as a personalized
federated learning (PFL) problem, based on a weighted col-
laboration graph where a node on the graph denotes a person-
alized model at a BS while a weighted edge represents the
collaboration intensity between a pair of models. Moreover,
the graph weights and neural receiver models are jointly opti-
mized so that generalization and personalization are optimized
together. Second, to solve the problem, a two-step alternating
method is applied: 1) update the personalized model at each
BS, given a collaboration graph and an aggregated model sent
from the server; 2) determine the collaboration graph at the
server, given the updated personalized models from all BSs.
The first step is simple, but there exists a challenge in the
second step, as the server has no access to local datasets on
BSs, which prevents it from conducting graph optimization.
Thus, the graph optimization problem in the second step is
transformed so that it does not rely on local data. The key idea
is to derive a generalization bound of the collaborative learning
problem, approximate it empirically, and then replace the
objective function of collaborative learning by the approximate
bound. In this way, the collaboration graph can be determined
at the server without using local data of BSs.

As compared to the existing graph-based PFL algorithm [9],
GraphRx is distinct in three aspects: 1) collaboration intensity
is captured with finer granularity rather than just model
cosine similarity; 2) no regularization with graph weights is
necessary; 3) the collaboration graph is optimized by following
the generalization bound of multi-source domain adaptation.

To support online training, pilot-free methods in [3], [5]
can be used where labels are directly retrieved from commu-
nication data, but their performance can be easily impacted
by erroneous labels. Thus, pilot-based training sequences (i.e.,
training pilots) are adopted to retrain the neural receiver in this
paper. To reduce overhead of training pilots, data augmentation
is needed [3]. Specifically, two techniques, rotation and noise
injection, are employed at each BS to enrich the quantity and
diversity of online training data.

The main contributions of this paper are summarized as
follows:

• A collaborative learning scheme, called GraphRx, is
proposed based on a collaboration graph among BSs to
retrain uplink neural receivers in multiple cells together.
It acquires channel knowledge in multiple cells collabo-
ratively and handles multi-cell interference effectively.

• GraphRx is formulated as a PFL problem, wherein the
personalized models of neural receivers and the collab-
oration graph are optimized jointly to achieve tradeoff
between generalization and personalization.

• The solution to the PFL problem is derived and mapped to
the federated learning paradigm as an iterative algorithm

alternating between the server and BSs. Particularly, an
approximate generalization bound is derived so that the
server can determine the collaboration graph without
relying on local data of BSs.

• Extensive simulation is carried out to validate key param-
eters and mechanisms of GraphRx. Performance results
show that GraphRx significantly outperforms the state-
of-the-art schemes.

The rest of this paper is organized as follows. Related
work is presented in Section II, while the system model is
provided in Section III. The problem formulation and analysis
are given in Section IV. After the issue of collaboration graph
optimization is resolved in Section V, the entire scheme of
GraphRx is elaborated in Section VI. Performance evaluation
is carried out in Section VII, and the paper is concluded in
Section VIII.

II. RELATED WORK

Compared with traditional model-based receivers, neural
receivers can: 1) reduce the overhead incurred by reference
signals to achieve a higher spectral efficiency [10]; 2) adapt
to real-world wireless channels without knowing underlying
channel models [1], [11]; 3) learn to compensate for hardware-
induced non-linear distortions [12], [13]. There exist various
architectures for neural receivers. As an early study in this
field, the OFDM neural receiver is designed with a fully-
connected neural network in [13]. Data-driven end-to-end
OFDM systems are further developed in [14], [15] to jointly
learn the transmitter and receiver. Furthermore, recurrent
networks [16] and convolution networks [1], [17] are also
employed in neural receivers. Since the model architecture in
[1] matches the physical layer setup of this paper, it is adopted
as a basic building block of neural receivers.

Online adaptation/retraining techniques for neural receivers
are studied in [2]–[5]. However, limited online channel knowl-
edge at a single receiver restrains model generalization abil-
ity, which calls for collaborative learning among multiple
receivers.

As a collaborative learning framework, federated learning
(FL) [8], [18] enables joint training of models at multiple
clients with privacy-preserving properties. To address the
challenge of data heterogeneity in FL, personalized FL (PFL)
[19] has been developed to enable each client to train a
personalized model during collaboration, which generally falls
into two categories [20]: coarse-grained PFL and fine-grained
PFL. For coarse-grained PFL, the algorithms cannot determine
the collaboration structure among clients (i.e., which clients to
collaborate on what level). Ditto [21] uses the globally-shared
model as regularization to develop personalized models, while
FedRep and its variants [22], [23] share one feature extractor
globally and personalize the last few layers of models. For
fine-grained PFL [9], [24], there exists a collaboration struc-
ture that can be flexibly adjusted to diverse types of heteroge-
neous data distributions. Similar to our scheme GraphRx, the
state-of-the-art fine-grained method pFedGraph [9] also uses
a graph to represent pair-wise collaboration among clients.
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Fig. 2. Fully convolutional network architecture of neural receiver.

However, our scheme features a different problem formulation
and also a rigorous solution derived from the generalization
bound. Additionally, GraphRx is the first neural receiver
designed based on a fine-grained PFL.

III. SYSTEM MODEL

A. SIMO-OFDM Communications

The uplink SIMO OFDM communication is considered with
Nr receive antennas at the BS and one transmit antenna at the
user. One OFDM frame spans a transmission time interval
(TTI) and includes Ns OFDM symbols and Nf subcarriers.
Each resource element (RE) has one symbol time and one
subcarrier. Let Y,H,N,G ∈ CNr×Ns×Nf be the received
signals, the channel coefficients, the additive white Gaussian
noise, and the inter-cell interference of one OFDM frame,
respectively. The transmit signal matrix is X ∈ CNs×Nf .
Let k be the index of OFDM symbol and l be the index
of subcarriers. We define the following vectors ykl = Y[:
, k, l],hkl = H[:, k, l],nkl = N[:, k, l],gkl = G[:, k, l] and
they all have the dimension of Nr. The frequency-domain
received signal on each RE during one TTI is

ykl = hklxkl + gkl + nkl, (1)

where xkl ∈ X,∀k = 1, ..., Ns, j = 1, ..., Nf .

B. Design of Neural Receiver

As shown in Fig. 2, for the model architecture of neural
receiver, a fully convolutional neural network (CNN) consist-
ing of multiple preactivation ResNet blocks [1] is employed.
The input of neural receiver has two parts: received OFDM
frame Y ∈ CNr×Ns×Nf and transmitted demodulation refer-
ence symbols (DMRS) configuration matrix XR ∈ CNs×Nf .
Aligned with standards [25], DMRS occupies selected sub-
carriers in one or two symbol times within each TTI. To
match the dimension of Ns × Nf , zeros are inserted in non-
DMRS positions within the frame to form XR. By stacking
Y and XR, we have T ∈ R(2Nr+2)×Ns×Nf by treating their
real and imaginary parts as two separate channels. The output
hθ(T) ∈ RNs×Nf×Nb is the log-likelihood ratios (LLR) with
NRS symbols in DMRS positions ignored, where NRS is the
number of DMRS symbols within one TTI and Nb is the
number of bits per symbol.

For model inference, Y contains received uplink data except
REs in DMRS positions. The model output (i.e., LLR of
data bits) is directly fed into an LDPC channel decoder to
obtain detected bits. For model training, Y contains received
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training pilots that are transmitted in place of uplink data.
Since bit detection is a binary classification problem for each
bit, the model output hθ(T) is compared against label L to
compute the binary cross-entropy (BCE) loss after Sigmoid
activation [1], where L is the preknown training pilot bits
of length (NsNf − NRS)Nb. In this paper, transmission and
reception of training pilots specially serve for model retraining,
while system-configured DMRS are kept for a neural receiver
to implicitly perform channel estimation by using XR and
received DMRS symbols in the corresponding positions of Y
[1].

C. Elements of Supervised Learning Problem

There are M base stations and one central server in a multi-
cell network shown in Fig. 3. The set of BS indices is denoted
byM = {1, ...,M}. An OFDM frame carrying training pilots
is named training pilot frame while a normal frame carrying
communication data is named data frame. BS m builds up an
online dataset Zm locally via periodic reception of training
pilot frames [1]. Local dataset Zm = {(T(i)

m ,L
(i)
m )}Nm

i=1 has
Nm data instances, where T

(i)
m and L

(i)
m are the input and

label of the i-th data instance. Let p = [p1, ..., pM ] be the
data quantity vector, i.e., pm = Nm

N , where N =
∑M

m=1 Nm

denotes the total number of data instances. Empirical risk
function F̂ (·) over local dataset Zm is defined as

F̂ (θ;Zm) =
1

Nm

Nm∑
i=1

ℓ
(
hθ

(
T(i)

m

)
,L(i)

m

)
, (2)

where hθ is a mapping function parameterized by model
parameters θ, and ℓ(·) is the BCE loss stated previously. In
this paper, each BS has a personalized neural receiver denoted
by θm,∀m ∈M.

IV. PROBLEM FORMULATION AND ANALYSIS

The overall working procedure of each BS is illustrated in
Fig. 3. During online deployment, each BS collects a local
dataset via periodic reception of training pilot frames within
a fixed time interval named collaboration period. To avoid
disrupting normal communications, training pilot frames are
sparsely inserted among data frames, such as at a ratio of
one training pilot frame for every 1000 data frames. This
local dataset is further augmented to enrich its quantity and
diversity, as elaborated in Section VI-B.

Based on the collected data, each BS participates in multi-
cell collaborative learning coordinated by the cloud server,



such that it learns data distributions from other cells. It is
emphasized that collaborative learning is a large-timescale task
[26] running in the background, as sufficient online data must
be collected for a neural receiver to learn statistical features of
online channels effectively. In addition, collaborative learning
will not disrupt online inference of the currently deployed
neural receiver. Once a new neural receiver is learned via
collaborative learning, it replaces the old one in operation.
Local real-time adaptation of neural receiver [3], [5] may
be incorporated in the framework to temporarily enhance
performance, but it is not the focus of this paper. Next, the
graph-based collaborative learning problem is formulated.

A. Collaboration-Graph-Based Learning

To reveal the pair-wise collaboration formed among BSs, a
directed collaboration graph weights G = {V, E} is defined:
node set V = {θm}m∈M is the set of local models, and
edge set E = {(j,m)|wmj ≥ 0,∀m, j ∈ M}, where wmj

is the edge weight on the directed edge from node j to node
m. This edge weight also indicates on what level node m
should learn from the data distribution of node j. There is
no collaboration between two nodes if wmj = 0. Let W be
the directed graph weight matrix with wmj as its element. Let
wm = [wm1, ...wmM ] be the collaboration vector of BS m,
and Nm = {j|j ̸= m,wmj > 0, j ∈ M} be the neighbor set
of BS m.

Collaboration graph weights W are unknown and thus
must be optimized along with personalized model parameters
{θj}j∈M. The existing graph-based PFL formulation [9]
embeds the graph weights into both the aggregated model term
and the graph regularization term, which has two problems: 1)
the second term is redundant when the first term already exists;
2) the second term based on cosine similarity only measures
the angular difference between model vectors but ignores their
magnitude difference.

To this end, a new formulation for graph-based learning
is designed to explicitly capture the data-level collaboration
from the perspective of each BS: BS m trains its personalized
model θm by learning from local data Zm and diverse
data from its neighbors Zj , j ∈ Nm, such that the learned
personalized model enjoys better generalization ability; mean-
while, collaboration weight wmj controls how much diverse
data distributions contribute to the model learning such that
collaboration will not cause local performance degradation.

Based on the above design rational, the graph-based col-
laborative learning of personalized model θm,∀m ∈ M is
formulated as Problem 1 (P1):

θm,wm =argmin
θ,wm

∑
j∈{m}∪Nm

wmjF̂ (θ;Zj) (3)

s.t.

M∑
j=1

wmj = 1, wmj ≥ 0,∀j ∈M, (4)

where the sum of non-negative weights in a collaboration
vector is normalized to 1 in (4). The collaboration graph
can flexibly balance the contribution of local knowledge
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and collaborative knowledge to capture the personalization-
generalization tradeoff. If the collaborative-knowledge term
denoted by

∑
j∈Nm

wmjF̂ (θ;Zj) is excluded from the objec-
tive (3), P1 degenerates to a local learning problem without
inter-BS collaboration. On the other hand, if the graph weights
W is set to be fully-connected with wm = pm1⃗ and there
exists only one universal model, P1 reduces to a conventional
FL problem [8].

B. Problem Analysis

Assuming a centralized setting where all the data and
models are collected to the server, the server can directly
solve P1 for each BS in parallel. However, the FL setting
in our problem imposes two critical constraints [8]: 1) only
models are communicated between the server and BSs; 2)
there is no peer-to-peer communication between BSs. These
constraints render solving P1 for each BS much more challeng-
ing. Following the principle of optimization decomposition,
P1 is decomposed into two alternative steps: 1) at each BS m,
optimizing local model θm with collaboration graph weights
W fixed; 2) at the server, optimizing collaboration graph
weights W given all the collected local models {θj}j∈M.

For the first step, to fulfill collaboration while preserving
data locality, local model update is combined with weighted
model aggregation. Note that model aggregation is performed
based on W at the server side. As shown in Fig. 4, each BS
m first fetches an aggregated model denoted as ϕ̄m from the
server as local model initialization. Each BS then runs local
gradient descent to update its local model. The details will be
elaborated in Section VI-A.

For the second step, however, it stills remains a critical
challenge to determine the collaboration graph. The server can
only access models {θm}m∈M while it cannot access local
data to evaluate empirical risks F̂ (·). Therefore, objective (3)
cannot be optimized directly. In the following section, a new
methodology derived from the generalization bound theory is
designed.

V. COLLABORATION GRAPH OPTIMIZATION

To optimize the collaboration graph, the theoretical general-
ization bound of {θm}m∈M is first derived. It is expressed by
a function of collaboration graph weights W. Next, the bound
is approximated empirically given the current personalized
models, and the approximate bound is used as an empirical
objective for optimizing graph weights W.



A. Derivation of Generalization Bound

In the rest of the paper, let F̂m(h) = F̂ (h;Zm) for
ease of notation. In preparation for theoretical derivation,
let a hypothesis function, denoted by h ∈ H, be a general
mapping from the model’s input to its output, where H is
the hypothesis space quantified by finite Vapnik-Chervonenkis
(VC) dimension c [27]. Let Fm(h) be the expected risk of a
hypothesis h over true data distribution Dm at BS m, that is,
Fm(h) = ET∼Dm [ℓ(h(T),L)] where T is sampled from Dm.

The fundamental goal of collaborative learning is to improve
the generalization ability of each hypothesis to unseen data
instances, which is equivalent to minimizing the expected risk
denoted by Fm(·). However, in practice, true data distribution
Dm cannot be known. Therefore, each node has to minimize
the empirical risk (i.e., objective (3)) over limited data in-
stances from a variety of data sources. Given any collaboration
vector wm that satisfies constraint (4), the objective of each
BS m in (3) is expressed as minimizing the empirical wm-
weighted error F̂wm(h):

ĥwm = argmin
h∈H

F̂wm(h), (5)

where F̂wm
(h) =

∑M
j=1 wmjF̂j(h). To evaluate how ĥwm

generalizes over the true data distribution, the generalization
bound of ĥwm

is expressed as the upper bound of the expected
risk ,i.e., Fm(ĥwm) [27]. This generalization bound is derived
in the following theorem.

Theorem 1. H is a hypothesis space of VC dimension c. For
each j ∈ M, N · pj data points are drawn from distribution
Dj . For any δ ∈ (0, 1), with probability at least 1 − δ, there
exists

Fm(ĥwm
) ≤Fm(h∗

m) + 2

√√√√ M∑
j=1

w2
mj

pj

(
c log(2N)− log δ

2N

)

+

M∑
j=1

wmj (dH∆H(Dm,Dj) + 2λmj) ,

where h∗
m = argminh∈H Fm(h) is the optimal minimizer of

expected risk, and dH∆H(Dm,Dj) is the H∆H-divergence
[27], and λmj = minh∈H (Fm(h) + Fj(h)).

Proof. One can view the optimization problem in (5) as a
multi-source domain adaptation (DA) problem [27]. As shown
in Fig. 4, the data instances of BS m are sampled from target
domain Dm and the data instances of BS j ∈ Nm are sampled
from source domains {Dj |j ∈ Nm}. Collaboration vector wm

is then the domain weights. The objective of multi-source
DA is to minimize the expected risk in the target domain,
which is equivalent to (5). Thus, the generalization bound of
multi-source DA (Theorem 3 in [28]) can be applied. Detailed
derivations are omitted due to space limit.

For ease of notation, let dmj = dH∆H(Dm,Dj) + 2λmj ,
and D is defined as the distribution divergence matrix whose
element at the m-th row and the j-th column is pair-wise

divergence dmj . Inspired by multi-source DA, for each node
on the collaboration graph, it can be considered in a target
domain with its neighbor nodes in source domains. Thus, a
graph-based learning problem can be decomposed into the
parallel multi-source DA processes shown in Fig. 4. The
generalization bound in Theorem 1 is derived for each BS
m, and thus the total generalization bound is obtained via the
summation of all the upper bounds:

M∑
m=1

Fm(ĥwm
) ≤

M∑
m=1

Fm(h∗
m) + 2Q(W,p, N, c)

+
∑

m,j∈M
[W ◦D]mj ,

(6)

where Q(W,p, N, c) =
∑M

m=1

√∑M
j=1

w2
mj

pj

(
c log(2N)−log δ

2N

)
,∑

m,j∈M [W ◦D]mj =
∑M

m=1

∑M
j=1 wmjdmj .

The total generalization bound shown in Eq. (6) contains
three terms: 1) the first term,

∑M
m=1 Fm(h∗

m), is deemed as a
constant value irrelevant to the graph weights; 2) the second
term, 2Q(W,p, N, c), is a quantity-aware term that depends
on data quantity vector p, graph weights W, total number of
data instances N , and VC dimension c of the hypothesis space;
3) the third term,

∑
m,j∈M [W ◦D]mj , is the distribution-

divergence-aware term depending on collaboration weights W
and distribution divergence matrix D.

When the theoretical generalization bound (right-hand-side
of Eq. (6)) is minimized, the total expected risk of all the
hypothesis functions has the lowest upper bound, leading to the
best generalization ability. Therefore, the fundamental insight
is to find a collaboration graph that minimizes the general-
ization bound in Eq. (6), and thus the obtained graph can
achieve the best generalization ability for personalized models.
Specifically, within the bound, the quantity-aware term and
the distribution-divergence-aware term (both are dependent on
W) need to be minimized. However, due to the difficulty of
computing these two theoretical terms without data, they must
be approximated such that an empirical objective of bound
minimization can be formed at the server side.

B. Empirical Objective for Optimizing Collaboration Graph

To find an empirical objective for optimizing the collabora-
tion graph, three steps are taken. First, the quantity-aware term
in Eq. (6) is approximated. Complexity indicator is defined as
C = 2

√
(c log(2N)− log δ)/2N . It is treated as a hyper-

parameter embedded in the quantity-aware term.
Second, the distribution-divergence-aware term in Eq. (6) is

approximated. Pair-wise divergence dmj is approximated by
the distance between the two models, d̂(θm,θj). Note that this
approximation of distribution divergence is adaptively adjusted
as the model parameters are iteratively updated. The positive
correlations between the distribution divergence and the model
difference are observed in [9], [29], and it is also proved
in [18] that the statistical distance between two distributions
directly causes model parameter difference. In Section VII-C,



this approximation is validated by comparing model difference
with estimated distribution divergence.

Third, combining the above approximate terms, an empirical
optimization objective regarding W is formed as

B̂(W,Θ) = C

M∑
m=1

√√√√ M∑
j=1

w2
mj

pj
+

M∑
m=1

M∑
j=1

wmj d̂(θm,θj).

(7)
By minimizing (7), the optimal collaboration graph is ob-
tained, leading to the lowest approximate generalization
bound.

VI. GRAPH-BASED COLLABORATIVE LEARNING

Two alternating steps stated in Section IV are elaborated.
In addition, the data augmentation mechanism is adopted to
enrich training data.

A. Alternating Optimization

The designed collaborative learning process consists of the
alternation of two steps: 1) at each BS m, optimizing the local
model θm with collaboration graph weights W fixed; 2) at
the server, optimizing collaboration graph weights W given
all the local models {θm}m∈M. Let t denote the index of
communication round.

1) Optimizing local model at each BS: The distributed
model updating process follows a widely-used protocol in
distributed learning. Each BS first fetches the aggregated
model denoted by ϕ̄

t
m from the server. Each BS then uses

it to initialize the local model as

θt,0
m ← ϕ̄

t
m, (8)

where θt,0
m is the initial model. Suppose θt,i

m is the model
after the i-th mini-batch gradient descent, then it is updated
by minimizing local empirical risk F̂m(·) in the next step as

θt,i+1
m ← θt,i

m − η∇F̂m(θt,i
m ), (9)

with η as the learning rate. After s steps starting from θt,0
m ,

each BS sends the updated local model θt,s
m to the server.

2) Optimizing collaboration graph at the server: As stated
in Section V, the empirical objective (7) guided by the
generalization bound is minimized:

Wt =argmin
W

B̂(W,Θ) (10)

s.t.

M∑
j=1

wmj = 1, wmj ≥ 0,∀j,m ∈M. (11)

The above problem is a convex optimization, and thus its
global optimum is solved by conventional solvers [30]. Once
the current collaboration graph weights Wt for {θt,s

m }m∈M is
obtained, the server computes the aggregated model for each
BS m, which is expressed by

ϕ̄
t+1
m =

∑
j∈{m}∪Nm

wt
mjθ

t,s
j ,∀m ∈M, (12)

which will be sent to each BS m in the next round.

Based on the above two steps, such T communication
rounds of training are performed until each BS m obtains a
well-learned personalized neural receiver θT

m with multi-cell
collaborative knowledge and the learned collaboration graph
is WT .

B. Mechanism of Data Augmentation

To achieve high spectral efficiency, each BS must keep the
overhead of training pilots low. Thus, the overall quantity
of training pilots may not be sufficient to produce satisfying
retraining results within a relatively short collaboration period.
To this end, two data augmentation techniques, rotation and
noise injection, are employed at each BS to enrich the quantity
and diversity of online training data.

Specifically, we adopt the design in [3]: 1) a rotating angle
ϕ is uniformly sampled from [0, 2π), and each symbol in
received training pilot frame Y is applied such a rotation to ob-
tain ejϕY; 2) an additive noise Na (with the same dimension
as N) is injected to each symbol, where Na ∼ CN (0, σ2

a). σ
2
a

is uniformly sampled from (0, σ2

2 ] (σ2 is the noise variance of
N). Thus, the augmented frame (denoted as Ya) is obtained:
Ya = ejϕY+Na. A new instance can be created by replacing
Y with Ya during training with the label unchanged, and
Ya will not be stored. Thus, no additional storage cost is
incurred. If the above augmentation is applied A−1 times for
each original instance, the augmented training data quantity is
increased by A times (i.e., augmentation time).

VII. PERFORMANCE EVALUATION

In this section, the simulation set-up is first presented,
followed by the results of ablation study, design verification,
and comparisons with several baselines.

A. Simulation Set-up

For uplink SIMO communications, we assume one antenna
at the user terminal and two receive antennas at the BS. The
number of BSs in multi-cell collaboration is set to 6, i.e., M =
6. Heterogeneous channel environments are assumed for these
six cells. Specifically, the tapped delay line (TDL) channel
models with diverse power delay profiles (PDP) [31], different
values of fast-fading parameters [3] (i.e., root-mean-squared
(RMS) delay spread σds and terminal velocity v) are adopted.
The training pilots are random binary sequences and DMRS
is configured at the second and eleventh symbol times within
each TTI [25]. The offline channel distribution is specified as
the TDL-A profile in the RMS delay spread interval of 0-50 ns
and the velocity interval of 0-5 m/s over the SNR range [-4,15]
dB. The neural receiver is pretrained over 64000 TTIs offline
with the mini-batch size set to 32, and then deployed online
as the initial model for GraphRx. To generate each channel
instance, the exact values of tds, v, and SNR are uniformly
sampled from the given intervals.

For online multi-cell channel generation, there are two types
of online heterogeneous channel distributions among six cells
as shown in Table I, namely heterogeneous data distributions
1 and 2 (i.e., Hetero-1 and Hetero-2). In the first type, within



TABLE I
HETEROGENEOUS MULTI-CELL ENVIRONMENTS

BS ID Hetero-1 Hetero-2

PDP σds(ns) v(m/s) PDP σds(ns) v(m/s)

1 B 500-600 0-5 B 0-50 0-5,15-20
2 B 450-550 0-5 C 450-500 0-5,15-20
3 C 200-300 15-20 B 0-50 0-5
4 C 150-250 15-20 C 150-200 0-5
5 E 400-600 15-20 E 0-50 0-5,15-20
6 E 450-550 15-20 E 200-400 0-5,15-20

each of these three pairs (BSs 1 and 2, BSs 3 and 4, BSs
5 and 6), two BSs exhibit similar channel distributions. Each
BS holds the same training data quantity. In the second type, a
more complicated heterogeneity is presented, and the training
data quantity ratio of six BSs is 3:3:1:1:2:4. The total quantity
of multi-cell training data is 6400 TTIs. The online SNR range
is set to [0,10] dB, and the mini-batch size is 32.

In addition, inter-cell interference is generated by letting
another signal propagate through an interfering channel and
reach the interfered BS [1]. For each uplink of BS m, the
interfering PDP is randomly selected among all the other BSs’
channel profiles, and RMS delay spread of interfering channel
has a deviation of ±20 ns from that of an uplink channel.
The interference power is on average 5 dB lower than the
noise power [32]. Note that the above interfering channel
information is not known by the receiver.

The critical simulation parameters are as follows. In each
cell, the system carrier frequency is 4 GHz with subcarrier
frequency 15kHz and OFDM symbol duration 71µs, and
Nf = 72, Ns = 14, NRS = 48. The test modulation scheme
is 16-QAM and LDPC channel coding with the code rate as
658/1024 is adopted. Unless otherwise specified, the hyper-
parameters of GraphRx are as follows: the number of epochs
for local gradient descent is set to 2; initial collaboration
graph weights W0 = 1

6 1⃗; complexity indicator C = 0.6,
data augmentation time A = 4, number of communication
rounds T = 20, which are confirmed via ablation study. The
ℓ2-norm is adopted as the model distance metric stated in
Section V-B, i.e., d̂(θm,θj) = ∥θm − θj∥2. Each distance
value is scaled into [0, 1]. For the training of neural receiver,
the Adam optimizer with learning rate η = 0.001 is adopted.

The main performance metric for evaluating receiver perfor-
mance is coded bit-error rate (BER). Our method GraphRx is
compared with the following baselines: 1) practical LMMSE
receiver [1]; 2) the locally-trained neural receivers with no
collaboration; 3) the FedAvg-trained globally-unified neural
receiver [8]; 4) the neural receivers trained by the state-of-
the-art PFL algorithms. Specifically, three representative PFL
algorithms are selected: Ditto [21], FedRep [22], and pFed-
Graph [9]. Furthermore, the genie-aided LMMSE receiver with
full and perfect channel coefficients is considered to achieve
the upper-bound BER performance in the interference-free
case. During training, a single-point BER (validation BER)
is evaluated over 20% of training data. To test performance of
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Fig. 5. Average validation BER at various communication rounds.
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Fig. 6. Average validation BER with various distance metrics and C.

a trained neural receiver, the standard Monte Carlo simulation
[25] is performed across the SNR range of [-4,15] dB based
on Table I.

B. Ablation Study

1) Impact of communication round: The number of com-
munication rounds for GraphRx to converge is explored.
During training, the validation BER is evaluated at 4 dB for
each neural receiver. As shown in Fig. 5, in both interference-
free and interference-included scenarios, GraphRx reaches
convergence at the 20-th communication round, where the
average validation BER of all BSs remains stable thereafter.
The existence of training data quantity imbalance and inter-
cell interference does not affect the convergence of GraphRx.

2) Impact of model distance metrics and complexity in-
dicator values: As stated in Section V-B, model distances
d̂(θm,θj) are computed to approximate distribution diver-
gences. Four distance metrics (i.e., ℓ1/ℓ2-norm, inner product,
and cosine similarity) are evaluated for two heterogeneous
distributions, respectively. As shown in Fig. 6(a), ℓ2-norm
achieves the lowest validation BER under two types of het-
erogeneity, and thus ℓ2-norm is selected as the desired metric.
In addition, complexity indicator C in objective (7) is varied
from 0.2 to 0.8, which means the importance of quantity-aware
term increases. As shown in 6(b), for Hetero-1, C should
be between 0.6 and 0.8, while for Hetero-2, low BERs are
achieved with C from 0.2 to 0.8. Therefore, this complexity
indicator is set to 0.6.

3) Impact of collaboration graph directivity and visualiza-
tion of learned graphs: Since the collaboration relationship
is not necessarily reciprocal, a directed collaboration graph is
learned in GraphRx. To validate this point, the performance of
GraphRx with directed and undirected graphs are compared in
Fig. 7. Note that graph weight matrix W must be symmetric in
an undirected graph, which is added as a constraint in solving
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Fig. 8. Visualization of directed collaboration graphs.

(10)-(11). For Hetero-1 where all BSs hold the same data
quantity, graph directivity has little impact on validation BER,
while for Hetero-2, the BER drops by 9.13% for Hetero-2 if a
directed graph is learned instead of an undirected one. This is
because in the latter case each BS has various data quantities:
contribution from BSs with large data quantities to those with
smaller quantities is more significant than contribution in the
opposite direction, which is also validated by the following
graph visualization.

The learned collaboration weights W of directed graphs
with GraphRx are shown in Fig. 8 for two heterogeneous
distributions. Specifically, wmj is the value at the m-th row
and the j-th column, which indicates how much BS m’s model
θm learns from BS j’s model θj . In Fig. 8(a), there exist three
pairs of BSs (1,2), (3,4), (5,6) exhibiting strong collaboration
weights. This is well aligned with their true data characteristics
in Table I. In Fig. 8(b), BS 2 does not need to collaborate
with others based on the learned graph, as it holds an enough
quantity of data and may not benefit from collaboration. BS
5 benefits much more by learning from BS 6 than that in the
reverse direction. Also, strong uni-directional collaboration is
established in each BS pair of (3,1) and (4,1).

4) Validation of data augmentation mechanism: The eval-
uation results of data augmentation is presented for Hetero-
1 in both interference-free and interference-included cases.
Specifically, through extensive trials, a quantity of around
6400 unaugmented TTIs is required at each BS to guarantee
convergence. As the training pilot overhead is controlled as
low as 0.1%, one training pilot frame is inserted among 1,000
transmitted OFDM frames. In this case, it requires around 1-2
hours (collaboration period) for each BS to collect 6,400 TTIs.
As previously stated in Sec. IV, during the collaboration pe-
riod, the currently deployed neural receiver operates normally.

To achieve better performance without increasing pilot
overhead or storage cost, data augmentation is conducted for
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Fig. 9. Coded BER of GraphRx tested under various augmentation times.
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Fig. 10. Correlations between model distance and estimated divergence.

each local dataset. As shown in Fig. 9(a), when augmentation
time A = 4, the average test BER of all neural receivers
achieves 1 dB SNR gain at BER = 10−5 compared with
that in the unaugmented case. However, when A increases
to 8, the BER performance drops as intensive augmentation
may cause overfitting. Similar patterns can also be observed
in Fig. 9(b) where inter-cell interference is considered, and a
significant gain of around 3 dB is achieved at BER = 10−3

compared with the unaugmented case. Therefore, in GraphRx,
data augmentation with A = 4 is adopted to enrich each local
dataset. This reduces the pilot overhead by 75% compared
with collecting four times the current quantity of data.

C. Effectiveness of Divergence Approximation

Due to the unavailability of theoretical bound in practice,
ℓ2 model distance is used to approximate pairwise divergence
dmj . In domain adaptation tasks, λmj is generally small and
thus can be ignored [28]. Following the common method
in [27], [28], H∆H-divergence is empirically estimated by
training a non-linear classifier to discriminate between any
pair of local datasets. There exists a strong positive correlation
between each BS pair’s model distance and distribution diver-
gence under both Hetero-1 and Hetero-2. Taking BS 1 shown
in Fig. 10(a) and 10(b) as an example, BS pair (1,2) has both
the smallest distance and divergence at the same time, and
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Fig. 11. Coded BER tested without inter-cell interference.
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Fig. 12. Coded BER tested with inter-cell interference.

BS 1 exhibits large distances and divergences simultaneously
from BSs 3 and 4. Such positive correlations are observed
by comparing each row of the distance matrix and divergence
matrix in Fig. 10.

D. Comparison with Baselines

The test performance of GraphRx is evaluated and com-
pared with other baseline receivers. For neural receivers, data
augmentation with A = 4 is adopted for all the algorithms for
fair comparison. The SNR gain is measured at BER = 10−5

unless stated otherwise.
First, we consider the scenario without inter-cell interfer-

ence as shown in Fig. 11 for Hetero-1 and Hetero-2. As
observed in both figures, the genie-aided LMMSE receiver
serves as the performance upper bound in the interference-
free case, outperforming GraphRx by 0.3 dB for Hetero-1
and 0.2 dB for Hetero-2. Our GraphRx achieves the best
BER performance among all the other baselines under these
two heterogeneous distributions. Specifically, for Hetero-1,
GraphRx exceeds both pFedGraph and FedRep by around
0.4 dB and it outperforms FedAvg by 0.9 dB. Note that the
performance of Ditto is very close to GraphRx for Hetero-1,
while Ditto performs 0.4 dB worse than GraphRx for Hetero-
2 shown in Fig. 11(b). In addition, under both Hetero-1 and
Hetero-2, FedAvg is inferior to local learning by around 0.2
dB, which reflects that learning a unified global model is
not optimal for improving local performance when data are
heterogeneously distributed. It is also worth noting that all the
methods based on neural receivers can outperform the practical
LMMSE receiver by a significant margin of over 4 dB.

Next, we consider the scenario with inter-cell interference
shown in Fig. 12. Under both Hetero-1 and Hetero-2, the
genie-aided LMMSE receiver is no longer the performance
upper bound since it does not have any knowledge of the
interfering channels. Under Hetero-1 illustrated in Fig. 12(a),
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Fig. 13. Standard deviation of coded BER tested for Hetero-2.

GraphRx achieves notable performance gains over all the
listed baselines. Specifically, it outperforms three other PFL
algorithms (i.e., Ditto, pFedGraph, and FedRep) by 0.5 dB, 1.5
dB, and 2.1 dB, respectively. Interestingly, the performance
of FedAvg is 1.6 dB better than that of local learning,
which suggests that even a non-personalized aggregate model
can achieve a substantial gain when inter-cell interference
exists. Under Hetero-2 shown in Fig. 12(b), GraphRx performs
equally well as Ditto, but outperforms all other baselines. Two
additional insights are drawn: 1) GraphRx is robust to inter-
ference, while the performance of FedRep varies significantly;
2) when interference exists, collaboration learning seems more
challenging under Hetero-2 than Hetero-1, as Hetero-2 has
a higher heterogeneity level in both local distributions and
data quantities than Hetero-1. This issue is subject to future
research.

Finally, the fairness among six BSs is presented in Fig.
13, which is quantified by the standard deviation (SD) of
the test BERs of all neural receivers. The SD is evaluated
at SNR = 5dB for Hetero-2 that has a higher heterogeneity
level. As shown in Fig. 13, GraphRx achieves the lowest
BER SD whether interference exists or not, which means the
best fairness can be guaranteed among all collaborators. In
addition, the BER SD values of all the methods become larger
with inter-cell interference.

VIII. CONCLUSION

A multi-cell collaborative learning scheme named GraphRx
was developed in this paper. With a weighted graph capturing
collaboration relationships among BSs, GraphRx was formu-
lated as a personalized federated learning problem. To solve
this problem, the personalized models were updated locally at
each BS and the collaboration graph was optimized centrally
at the server by minimizing an approximate generalization
bound, and these two steps were performed alternatively.
Data augmentation techniques were further incorporated into
GraphRx to reduce overhead of training pilot signals. GraphRx
achieved significant performance gains over the baselines.

GraphRx is designed based on an existing neural receiver
architecture, but this architecture itself demands more study,
particularly in two aspects. First, an architecture that does
not need DMRS signals is desired. Second, how to support
MIMO communications by a neural receiver requires more
exploration. Moreover, further research is needed to handle
scenarios with both inter-cell interference and high heterogene-
ity among cells. The authors have provided public access to
their code at https://github.com/tesiawang/GraphRx.
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